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Abstract

We have developed a formulation for molecular dynamics algorithm for the replica-exchange method. The effectiveness
of the method for the protein-folding problem is tested with the penta-peptide Met-enkephalin. The method can overcome
the multiple-minima problem by exchanging non-interacting replicas of the system at several temperatures. From only one
simulation run, one can obtain probability distributions in canonical ensemble for a wide temperature range using
multiple-histogram reweighting techniques, which allows the calculation of any thermodynamic quantity as a function of
temperature in that range. q 1999 Elsevier Science B.V. All rights reserved.

1. Introduction

In protein-folding simulations, it is usually difficult to obtain accurate canonical distributions at low
temperatures by conventional simulation methods because simulations at low temperatures tend to get trapped in
one of a huge number of local minimum-energy states. One way to overcome this multiple-minima problem is
to perform a simulation based on non-Boltzmann probability weight factors so that a random walk in energy
space may be realized. Random walks allow the simulation to pass any energy barrier and to sample a much
wider phase space than by conventional methods. Monitoring the energy in a single simulation run, one can
obtain not only the global minimum-energy state but also any thermodynamic quantities as a function of

w xtemperature for a wide temperature range. One such well-known method is the multicanonical algorithm 1 .
This method and its generalizations have already been used in many applications in protein and related systems
Ž w x. Ž .see, e.g., Refs. 2–15 . While a simulation in multicanonical ensemble performs a free 1-dimensional 1D

w xrandom walk in energy space, that in simulated tempering 16,17 performs a free random walk in temperature
space. This random walk, in turn, induces a random walk in energy space and allows the simulation to escape
from local minima-energy states. Simulated tempering has also been applied to the protein-folding problem
w x18,19 . These methods which perform random walks in energy space due to non-Boltzmann weight factors are
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w x Žnow given a generic name: generalized-ensemble algorithm 19 . For a review of the generalized-ensemble
w x .approach in the protein-folding problem, see, e.g., Ref. 20 .

The generalized-ensemble method is powerful but, in the above two methods, the probability weight factors
are not a priori known and have to be determined by iterations of short trial simulations. This process can be

Ž .non-trivial and very tedious. In the present work, we develop a molecular dynamics MD algorithm based on a
w x Žnew generalized-ensemble algorithm, the replica-exchange method 21–25 . The method is also referred to as

w x w x w x .the replica Monte Carlo method 22 , multiple MarkoÕ chain method 24 , and parallel tempering 25 . In this
method, the weight factor is essentially known and there is no complication in its determination. The Monte

Ž . Ž .Carlo MC and MD algorithms in dihedral space in this generalized ensemble has been applied to an
w x Ž .oligopeptide system 26 . Details for the MD algorithm in Cartesian coordinates have yet to be worked out,

and it is the purpose of the present Letter to do so. The performance of the new algorithm is tested with the
system of a penta-peptide, Met-enkephalin, in gas phase.

2. Methods

Ž .Let us consider a system of N atoms of mass m ks1, . . . , N with their coordinate vectors and momentumk
� 4 � 4 Ž .vectors denoted by q' q , . . . ,q and p' p , . . . , p , respectively. The Hamiltonian H q, p of the system1 N 1 N

Ž . Ž .is the sum of the kinetic energy K p and the potential energy E q :

H q , p sK p qE q , 1Ž . Ž . Ž . Ž .
where

N 2pk
K p s . 2Ž . Ž .Ý

2mkks1

Ž . Ž .In the canonical ensemble at temperature T , each state x' q, p with the Hamiltonian H q, p is weighted
by the Boltzmann factor:

W x ;T seyb H Žq , p. , 3Ž . Ž .B

Ž .where the inverse temperature b is defined by bs1rk T k is the Boltzmann constant . The average kineticB B

energy at temperature T is then given by

N 2pk 3² :K p s s Nk T . 4Ž . Ž .ÝT B2¦ ;2mkks1 T

Ž . w xIn the original version of the replica-exchange method REM 21–25 , the MC algorithm was used. Here,
we describe the method in the context of MD algorithm.

Ž .The generalized ensemble for REM consists of M non-interacting copies or replicas of the original system
Ž .in the canonical ensemble at M different temperatures T ms1, . . . , M . We arrange the replicas so that therem

is always exactly one replica at each temperature. Then there is a one-to-one correspondence between replicas
Ž . Ž .and temperatures; the label i is1, . . . , M for replicas is a permutation of the label m ms1, . . . , M for

temperatures, and vice versa:

is i m ' f m ,Ž . Ž .
5Ž .y1½ msm i ' f i ,Ž . Ž .

Ž . y1Ž .where f m is a permutation function of m and f i is its inverse.
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w xw iŽ1.x w iŽM .x 1 w M xLet Xs x , . . . , x s x , . . . , x stand for a ‘state’ in this generalized ensemble. Here, theŽ . ž /Ž .1 M m 1 mŽM .
superscript and the subscript in x w i x label the replica and the temperature, respectively. The state X is specifiedm

by the M sets of coordinates qw i x and momenta pw i x of N atoms in replica i at temperature T :m

w x w xw i x i ix ' q , p . 6Ž .Ž .m m

Because the replicas are non-interacting, the weight factor for the state X in this generalized ensemble is
Ž .given by the product of Boltzmann factors for each replica or at each temperature :

M M
w x w xŽ . Ž .w i x w i x i m i mW X sexp y b H q , p sexp y b H q , p , 7Ž . Ž .Ž . Ž .Ý ÝŽ .REM m i m½ 5 ½ 5

is1 ms1

Ž . Ž . Ž .where i m and m i are the permutation functions in Eq. 5 .
We now consider exchanging a pair of replicas in the generalized ensemble. Suppose that we exchange

replicas i and j which are at temperatures T and T , respectively:m n

X XXw x w xw x w xi j j iXs . . . , x , . . . , x , . . . ™ X s . . . , x , . . . , x , . . . . 8Ž .Ž . Ž .m n m n

Ž .Here, i, j, m, and n are related by the permutation functions in Eq. 5 , and the exchange of replicas introduces
a new permutation function f X:

is f m ™ js f X m ,Ž . Ž .
9Ž .X½ js f n ™ is f n .Ž . Ž .

The exchange of replicas can be written in more detail as

XXw x w x w x w x w xi i i w j x j jx ' q , p ™ x ' q , p ,Ž . Ž .m mm m
10Ž .XX w x w xw x w xw j x j j w i x i i½ x ' q , p ™ x ' q , p ,Ž . Ž .n nn n

where the definitions for pw i xX and pw j xX will be given below. We remark that this process is equivalent to
exchanging a pair of temperatures T and T for the corresponding replicas i and j as follows:m n

XXw x w x w x w x w xi i i w i x i ix ' q , p ™ x ' q , p ,Ž . Ž .m nm n
11Ž .XXw x w x w x w xw j x j j w j x j j½ x ' q , p ™ x ' q , p .Ž . Ž .n mn m

w xIn the original implementation of the REM 21–25 , MC algorithm was used, and only the coordinates q
Ž Ž ..and the potential energy function E q had to be taken into account. Here, in our implementation by MD
algorithm, we also have to deal with the momenta p. We propose the following momentum assignment in Eq.
Ž . Ž Ž ..10 and in Eq. 11 :

° TX nw x w xi ip ' p ,(Tm~ 12Ž .
TX mw x w xj jp ' p ,(¢ Tn

which we believe is the simplest and most natural. This assignment means that we just rescale uniformly the
velocities of all the atoms in the replicas by the square root of the ratio of the two temperatures so that the

Ž .temperature condition in Eq. 4 may be satisfied.
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In order for this exchange process to converge towards an equilibrium distribution, it is sufficient to impose
Ž X .the detailed balance condition on the transition probability w X ™ X :

W X w X ™ X X sW X X w X X
™ X . 13Ž . Ž . Ž . Ž . Ž .REM REM

Ž . Ž . Ž . Ž . Ž .From Eqs. 1 , 2 , 7 , 12 and 13 , we have
Xw X ™ XŽ . X Xw x w xw x w xj j i isexp yb K p qE q yb K p qE qŽ . Ž . Ž . Ž .�X m nw X ™ XŽ .

w x w x w x w xi i j jqb K p qE q qb K p qE q ,Ž . Ž . Ž . Ž . 4m n

T T 14Ž .m n w x w xw x w xj i i jsexp yb K p yb K p qb K p qb K pŽ . Ž . Ž . Ž .m n m n½ T Tn m

w x w xw x w xj i i jyb E q yE q yb E q yE q ,Ž . Ž . Ž . Ž . 4m n

sexp yD ,Ž .
where

w x w xi jw xD' b yb E q yE q , 15Ž .Ž . Ž .Ž .n m

Ž Ž ..and i, j, m, and n are related by the permutation functions in Eq. 5 before the exchange:

is f m , js f n . 16Ž . Ž . Ž .
This can be satisfied, for example, by the usual Metropolis criterion:

1 , for D(0 ,X w x w xi jw X ™ X 'w x x s 17Ž . Ž .Ž .m n ½ exp yD , for D)0 ,Ž .
Ž Ž w i x < w j x.. Ž .where in the second expression i.e., w x x we explicitly wrote the pair of replicas and temperatures tom n

w xbe exchanged. Note that this is exactly the same criterion that was originally derived for MC algorithm 21–25 .
w xWithout loss of generality, we can assume b -b - . . . -b . A simulation of the REM 21–25 is then1 2 M

realized by alternately performing the following two steps:
Ž .1 Each replica in canonical ensemble of the fixed temperature is simulated simultaneously and independently

for a certain MC or MD steps.
Ž . w i x w j x2 A pair of replicas at neighboring temperatures, say x and x , are exchanged with the probabilitym mq1

w i x w j x Ž .w x x in Eq. 17 .Ž .m mq1
Ž . Ž .In the present approach, we employ the MD algorithm for Step 1 . Note that in Step 2 we exchange only

pairs of replicas corresponding to neighboring temperatures, because the acceptance ratio of the exchange
Ž Ž . Ž ..decreases exponentially with the difference of the two b s see Eqs. 17 and 19 . Note also that whenever a

Ž . Ž .replica exchange is accepted in Step 2 , the permutation functions in Eq. 5 are updated.
w xThe major advantage of REM over other generalized-ensemble methods such as multicanonical algorithm 1

w x Ž Ž ..and simulated tempering 16,17 lies in the fact that the weight factor is a priori known see Eq. 7 , while in
the latter algorithms the determination of the weight factors can be very tedius and time-consuming. For the
optimal performance of REM, however, one still has to choose an appropriate temperature distribution. There

w xexists an iterative procedure for this 21 , and we have modified it further. The details of our procedure for the
Ždetermination of the optimal temperature distribution will be given elsewhere Y. Sugita and Y. Okamoto, in

.preparation .
Ž .The canonical expectation value of a physical quantity A at temperature T ms1, . . . , M can be calculatedm

by the usual arithmetic mean as follows:
N Msim1

w xi² : y1A s A x t d , 18Ž . Ž .y1Ý ÝT Ž .i ; t f Ž i ; t . ,mfm Nsim ts1 is1
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y1Ž .where N is the total number of measurements made for each replica, f i;t is the permutation function insim
Ž .Eq. 5 at t th measurement, and d is Kronecker’s delta function. When the temperature-exchange view pointk , l

is taken, this equation can also be written as

Nsim1
w xŽ .f m ; t² :A s A x t . 19Ž . Ž .Ž .ÝT mm Nsim ts1

For the expectation value at any intermediate temperature, we use the multiple-histogram reweighting
w x Ž w x.techniques 27,28 an extension of which is also referred to as WHAM 28 as follows. Suppose we have made

Ž .R-independent simulation runs at R different temperatures. Let N E and n be the energy histogram and them m
Ž .total number of samples obtained in the mth run, respectively. In REM we have n sN . The expectationm sim

value of a physical quantity A at any intermediate temperature Ts1rk b is given byB

A E P E ;bŽ . Ž .Ý
E² :A s , 20Ž .T

P E ;bŽ .Ý
E

where

R
y1 yb Eg N E eŽ .Ý m m

ms1P E ;b s , 21Ž . Ž .R
y1 f yb Em mn g eÝ m m

ms1

and

eyf m s P E ;b . 22Ž . Ž .Ý m
E

Ž .Here, g s1q2t , and t is the integrated autocorrelation time at temperature T . Note that P E;b and fm m m m m
Ž . Ž . w xin Eqs. 21 and 22 are solved self-consistently by iteration 27,28 .

3. Results and discussion

The effectiveness of the algorithm presented in the previous section was tested for the system of a
penta-peptide, Met-enkephalin, in gas phase. This peptide has the amino-acid sequence Tyr–Gly–Gly–Phe–Met.
The N and C termini of the peptide was blocked with acetyl and N-methyl groups, respectively. The force-field

w xparameters were taken from the all-atom version of AMBER 29 , and the dielectric constant was set equal to 1.
w xThe temperature during the MD simulations was controlled by the constraint method 30,31 . The computer

w x w xcode developed in Ref. 32,33 , which is based on PRESTO 34 , was used. The unit timestep was set to 0.5 fs,
6 Ž .and we made an MD simulation of 2=10 timesteps or 1.0 ns for each replica, starting from an extended

Žconformation. Before taking the data, we made regular canonical MD simulations for 100 ps at each
.temperature and then a replica-exchange simulation of 100 ps for thermalization.

Ž Ž . .We used the following eight temperatures Ms8 in Eq. 7 , etc. : 700, 585, 489, 409, 342, 286, 239, and
200 K, which are distributed exponentially, following the annealing schedule of simulated annealing simulations
w x35 . As is shown below, this choice already gave an optimal temperature distribution, and thus we did not need
the elaborate process for the determination of the temperature distribution for this peptide. The replica exchange
was tried every 10 fs, and the data were stored just before the replica exchange for later analyses. We thus have

5 Ž .N s10 in Eq. 18 for each replica.sim
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As is apparent from the description of REM in the previous section, a replica-exchange simulation is
particularly suitable for parallel computers. Because one can minimize the amount of information exchanged

Žamong nodes, it is best to assign each replica to each node exchanging pairs of temperature values among
.nodes is much faster than exchanging coordinates and momenta . This means that we keep track of the

Ž . y1Ž . Ž .permutation function m i;t s f i;t in Eq. 5 during the simulation. After every 10 fs of parallel MD
simulations, four pairs of replicas corresponding to neighboring temperatures were exchanged, and the pairing
was alternated between the two possible choices.

Ž . Ž .As for expectation values of physical quantities at various temperatures, we used Eqs. 20 – 22 . In the
present work we set RsMs8 in these equations, and took into account the runs of all the replicas. For

w xbiomolecular systems the integrated autocorrelation times are approximately equal 28 . We thus set gsconst
Ž . 5 Ž . Ž .in Eq. 21 for simplicity. We also have n sN s10 in Eqs. 18 and 21 .m sim

We first examine whether the present replica-exchange simulation indeed performed properly. There are
Ž . Ž .three points to check. a Were the temperatures optimally distributed? b Was the number of replicas

Ž . Ž .temperatures sufficient? c Was the highest temperature sufficiently high so that no trapping in an
energy-local-minimum state occurs? The first two points can be checked by examining the acceptance ratios of
replica exchange corresponding to the adjacent pairs of temperatures. For the first point, the optimal temperature
distributions imply that all the acceptance ratios are the same, resulting in a free random walk in the replica
Ž . Ž .temperature space. For the second point, the number of replicas temperatures is sufficient if the acceptance

Ž .ratios are not too small say, greater than 0.1 . In Table 1 we list the acceptance ratios of replica exchange. The
Ž . Ž .values are indeed uniform all about 15% of acceptance probability and large enough )10% . Hence, the two

ŽŽ . Ž ..of the above criteria a and b for optimal performance are met.
It is not as straightforward to check the third point as in the previous two points. Observed random walks

Ž .among replicas and temperatures will not be sufficient for the third point. This is because we cannot exclude
the following possibility. If all the replicas happen to be in the same energy-local-minimum state and the energy

Ž .barrier to escape from this state is very high with respect to the highest temperature , then we will still observe
Ž .random walks among all the replicas and temperatures but they will stay in the same local minimum.

Supporting evidence for the third point being met can be obtained by comparing the results with those of regular
canonical simulations, as discussed below further.

Ž .The results in Table 1 imply that one should observe a free random walk in the ‘replica and temperature
Ž .space’. In Fig. 1 we show the time series of replica exchange at the lowest temperature Ts200 K . We indeed

observe a random walk in the ‘replica space’. The complimentary picture to this is the temperature exchange for
Ž .each replica. The results for one of the replicas Replica 6 are shown in Fig. 2a. We again observe a random

walk in the ‘temperature space’ between the lowest and highest temperatures. In Fig. 2b the corresponding time
series of the total potential energy is shown. We see that a random walk in the potential energy space between
low and high energies is realized. Note that there is a strong correlation between the behaviors in Fig. 2a,b, as
there should.

Table 1
Acceptance ratios of replica exchange corresponding to pairs of neighboring temperatures

Pair of temperatures Acceptance ratio

200l239 K 0.160
239l286 K 0.149
286l342 K 0.143
342l409 K 0.139
409l489 K 0.142
489l585 K 0.146
585l700 K 0.146
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Fig. 1. Time series of replica exchange at T s200 K.

In Fig. 3a the canonical probability distributions obtained at the chosen eight temperatures from the
replica-exchange simulation are shown. We see that there are enough overlaps between all neighboring pairs of

Ždistributions, indicating that there will be sufficient numbers of replica exchanges between pairs of replicas see
. ŽTable 1 . In Fig. 3b we compare the above canonical probability distributions at three temperatures Ts200,

.239, and 700 K obtained by the replica-exchange MD simulation with those obtained by the regular canonical
MD simulations made separately at the corresponding temperatures. The canonical simulations were performed

Ž .with the same initial conditions and simulation time 1 ns as the replica-exchange simulation. We observe the
expected behavior that the distributions agree at higher temperatures and that they tend to deviate at lower
temperatures. The fact that the distributions obtained by the regular canonical simulations at low temperatures
tend to shift to the right with respect to those obtained by the replica-exchange ones is the signal that the
canonical simulations got trapped in states of energy local minima at these temperatures. This point will be
further elucidated below.

Ž . Ž .Fig. 2. Time series of temperature exchange a and the total potential energy b for one of the replicas.
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Fig. 3. The canonical probability distributions of the total potential energy of Met-enkephalin obtained from the replica-exchange MD
Ž .simulation at the eight temperatures a and comparison of canonical probability distributions obtained from the replica-exchange MD

Ž . Ž . Ž . Ž .simulation solid curves and the conventional canonical MD simulations crosses at three temperatures b . The distributions in a
Ž . Ž .correspond to the following temperatures from left to right : 200, 239, 286, 342, 409, 489, 585, and 700 K. Pairs of distributions in b
Ž .correspond to the following temperatures from left to right : 200, 239, and 700 K.

Ž .All these results give enough evidence that the above at least first two criteria are met and that the present
replica-exchange simulation indeed performed properly and effectively.

We further compare the results of the replica-exchange simulation with those of a single canonical MD
Ž .simulation of 1 ns at the corresponding temperatures. In Fig. 4 we compare the distributions of a pair of

Ž . Ž .dihedral angles f,c of Gly-2 at two extreme temperatures Ts200 and 700 K . While the results at Ts200
K from the regular canonical simulation are localized with only one dominant peak, those from the

Ž .replica-exchange simulation have several peaks compare Fig. 4a and Fig. 4b . Hence, the replica-exchange run
samples much broader configuration space than the conventional canonical run at low temperatures. Note that
the sets of peaks observed in the distribution from the replica-exchange simulation include those from the
canonical simulation as a subset. However, the latter peak is not the highest one in the former, suggesting that
the canonical run did not end up in the ground state but got trapped in one of other energy-local-minimum
states. The average potential energy at 200 K of the conformation corresponding to the highest peak in

Ž .distributions for the canonical run Fig. 4a is by about 2 kcalrmol higher than that for the replica-exchange
Ž . Ž . Ž .simulation Fig. 4b y141 versus ca. y143 kcalrmol . The results at Ts700 K Fig. 4c,d , on the other

hand, are similar, implying that a regular canonical simulation can give accurate thermodynamic quantities at
high temperatures.

Incidentally, the fact that the distribution obtained from the replica-exchange simulation has several peaks
even at low temperatures gives a partial support that the third criterion above for the optimal performance of
replica-exchange simulations is met. Namely, the highest temperature is sufficiently high so that wide
conformational space is sampled and the distribution is not forced to converge to a single conformation even at

Žlow temperatures, where regular canonical simulations fall in a single energy-local-minimum state. We should
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Ž . Ž . Ž .Fig. 4. Distributions of a pair of dihedral angles f,c of Gly-2 for: a Ts200 K from a regular canonical MD simulation, b Ts200 K
Ž . Ž .from the replica-exchange MD simulation, c Ts700 K from a regular canonical MD simulation, and d Ts700 K from the

replica-exchange MD simulation.

of course see only the ground-state conformation at zero temperature, which implies that the lowest temperature
Ž . .200 K we considered is not low enough to see a single distribution peak of the ground state.

As all simulations in generalized ensembles should, a single replica-exchange simulation can give any
thermodynamic quantity as a function of temperature. For this we use the multiple-histogram reweighting

w x Ž Ž . Ž ..techniques 27,28 see Eqs. 20 – 22 . About 10–100 iterations were necessary for the convergence of Eqs.
Ž . Ž .21 and 22 . In Fig. 5 we show the average total potential energy as a function of temperature. As expected
from the results of Figs. 3 and 4, we observe that the canonical simulations at low temperatures got trapped in
states of energy local minima, resulting in the discrepancies in average values between the results from the
canonical simulations and those from the replica-exchange simulation. Note that the canonical simulations start

Ž .getting trapped already near 300 K and below , which is an experimentally relevant temperature. This implies

Fig. 5. Average total potential energy as a function of temperature. The solid curve is the result from the replica-exchange MD simulation
and the dots are those of regular canonical MD simulations at eight temperatures.
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that much longer simulation runs are required to obtain accurate thermodynamic averages at these temperatures
by conventional MD methods based on canonical ensemble. As expected, we do have complete agreement at
higher temperatures between the results from the canonical simulations and those from the replica-exchange
simulation.

4. Conclusions

w xIn this Letter we have presented a formulation for MD algorithm for the replica-exchange method 21–25 . In
this method the weight factor is essentially known and there is no complication in its determination, while in

Ž w x. Žother generalized-ensemble algorithms such as multicanonical algorithm 1 the determination of the non-
.Boltzmann weight factor can be very tedious and time-consuming. The effectiveness of the method was tested

with the penta-peptide Met-enkephalin. It was shown that from a single simulation run one can obtain various
thermodynamic quantities as a function of temperature for a wide temperature range. Hence, the new method is
particularly useful for studying the protein-folding problem where information of a wide conformational space
Ž .from a random-coil state to the native folded state is required.
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