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ABSTRACT In this work, we explore the ques-
tion of whether pKa calculations based on a micro-
scopic description of the protein and a macroscopic
description of the solvent can be implemented to
examine conformationally dependent proton shifts
in proteins. To this end, we introduce a new method
for performing constant-pH molecular dynamics
(PHMD) simulations utilizing the generalized Born
implicit solvent model. This approach employs an
extended Hamiltonian in which continuous titra-
tion coordinates propagate simultaneously with the
atomic motions of the system. The values adopted by
these coordinates are modulated by potentials of
mean force of isolated titratable model groups and
the pH to control the proton occupation at particu-
lar sites in the polypeptide. Our results for four
different proteins yield an absolute average error of
�1.6 pK units, and point to the role that thermally
driven relaxation of the protein environment in the
vicinity of titrating groups plays in modulating the
local pKa, thereby influencing the observed pK1/2

values. While the accuracy of our method is not yet
equivalent to methods that obtain pK1/2 values
through the ad hoc scaling of electrostatics, the
present approach and constant pH methods in gen-
eral provide a useful framework for studying pH-
dependent phenomena. Further work to improve
our model to approach quantitative agreement with
experiment is outlined. Proteins 2004;56:738–752.
© 2004 Wiley-Liss, Inc.
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INTRODUCTION

The pH of an aqueous protein solution and the conse-
quent protonation states of the protein constituents are
very important factors in the structure and function of
proteins. For example, most biologically relevant proteins
achieve their native fold in a narrow pH range near 7, and
are unstable or non-native outside this range. In addition,
the functionalities of active sites in many enzymes are
sensitive to the protonation states of nearby residues.
Likewise, accurate prediction of protonation states at
physiological pH is integral in calculating accurate bind-
ing affinities of ligands to protein targets. Furthermore,
pH modification is an important experimental tool in

studying the folding pathways of small peptides and
proteins.1

Despite the importance of pH in biological equilibria,
simulation techniques for biomolecules generally consider
pH in a relatively primitive fashion. Fixed protonation
states are typically employed for each titratable group in
the system. This can be particularly problematic for histi-
dine residues, where it is not always clear which of the two
imidazole nitrogens should be protonated at physiological
pH. Also, simulations outside the pH � 7 range are very
difficult to prepare because of uncertainty in the pKa shifts
from standard model reference pKa values. Moreover, a
fixed titration state is a severe approximation in systems
where pH and conformational changes are coupled as in
the �-amyloid peptide,2 the prion protein,3 or other small
peptides.4–6

In the last decade, several techniques, which we term
simple continuum models, have been developed to deter-
mine the pKa shifts in proteins.7–9 The general idea
embodied in these calculations is to use an implicit water
model, such as continuum electrostatic theory or a Lange-
vin dipole water model, to estimate the pKa shifts of a
static structure due to electrostatic forces in the protein
environment. These calculations were originally based on
a single static X-ray structure.7 However, it is becoming
common practice to average the pKa shifts over multiple
conformations, using either several snapshots obtained by
molecular dynamics (MD) runs or an ensemble of NMR
structures.10–12 With suitable (ad hoc) adjustments of the
dielectric constant of the protein, these methodologies may
achieve pKa values on average less than 1 pK unit in error
of experimental results.

Unfortunately, a number of difficulties and ambiguities
plague the application of simple continuum models. First,
an adjustable parameter known as the solute dielectric
must be manually selected. This parameter essentially
determines the magnitude of the pKa shifts and the
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strength of the electrostatic interactions of a titratable
group with its environment. To determine a macroscopic
dielectric constant for a desired system without fitting to
the experimental results requires a significant computa-
tional cost.13 However, this quantity does not9,14 necessar-
ily have the same meaning as the optimal dielectric
constant to use for calculating pKa values. In addition, it is
known that in a protein, the dielectric constant is a
spatially varying function. The dielectric of different pro-
teins and at various positions in the protein can range
from �10 to �40.9,13,15,16 Thus, choosing a single dielectric
constant to use in calculations of pKa shifts for all titrat-
able groups in a protein is problematic.14 Furthermore, the
standard protocol is to assign the solute dielectric of each
model compound to be the same as the protein. This
procedure seems to be physically incorrect, since it is well
known that the solvation energies of small compounds
match experiment quite well using continuum theory with
a dielectric value of one.17 Yet another issue specific to
MD- or Monte Carlo–based configurational averaging
techniques is that in most methods, the protein configura-
tions are biased toward the fixed protonation states that
are selected in the simulation runs. Studies employing the
linear response approximation (LRA) address this issue by
configurational averaging in both the charged and un-
charged states of a titratable group for calculation of the
intrinsic pKa.9,18,19

The primary purpose of this work is to revisit the
question of whether a method that couples conformational
dynamics to titration events and utilizes a macroscopic
solvent with a dielectric constant equal to unity can
provide accurate predictions of pKa values in proteins.
Coupling of conformational dynamics to titration events
refers to weighting protein configurations based on the
energetic favorability of certain protonation states. It also
implies weighting protonation states by the probabilistic
occurrence of certain conformational states. This physics
should, in principle, be sufficient to account for microscopic
relaxation of the protein atoms around each titratable
group and hence obviate the need for a nonunity dielectric
constant. Warshel and coworkers first showed that it is
indeed possible to obtain reasonable estimates of pKa

values using LRA with either a Langevin dipole solvent
model with �solute � 19,18,19 or an all-atom solvent mod-
el.9,19,20 Other methods, however, that couple protonation
and conformation have been developed and reported in the
last few years.21–24 Aiming for a similar objective, almost a
decade ago, Mertz and Pettitt25 proposed a simple con-
stant-pH method based on an open system Hamiltonian.
More recently, Borjesson and Hunenberger24 introduced a
method by which titrations of groups are linked to a proton
bath via a continuous titration parameter.

Two methods worthy of note are the ones of Bürgi et al.21

and Baptista et al.23 Bürgi et al.21 developed a hybrid
Monte Carlo/MD scheme in which titration events occur
based on a simple Metropolis criterion. This stochastic
switching criterion is derived from an estimate of the free
energy difference between the protonated and unproto-
nated state. The free energy difference is approximated by

a short run of thermodynamic integration, �40 ps, for a
single residue at a time. The main drawback of this
approach is that one acceptance/rejection cycle for each of
the titratable residues for a reasonably sized protein
would, in total, take on the order of a nanosecond of
simulation time. Nonetheless, the 40 ps thermodynamic
integration period is essential to allow for rearrangement
and relaxation of the protein and water molecules.

Contrasting the free energy approach of Bürgi et al.,21

Baptista et al.23 have developed a procedure in which an
explicit water MD simulation is interrupted periodically
by a continuum-based static Monte Carlo pKa calculation.
A random selection of one of the lowest energy protonation
states in that calculation is then used in the next MD
simulation cycle. This approach also avoids the issue of
mixed titration states, since only endpoint states are
considered. Nonetheless, sudden changes in the protona-
tion state of a system will introduce discontinuous impul-
sive “shocks” in a MD simulation. This phenomenon can
lead to spikes in the dynamical forces and possible numeri-
cal instabilities. Another problem is that the acceptance/
rejection of a titration state is based upon an instanta-
neous protein conformation. Although this fact does not
affect the ability to sample a proper distribution of confor-
mations and titration states, it may cause the sampling of
protonation states to be inefficient. Finally, the acceptance/
rejection criterion is based on a continuum model calcula-
tion; thus, it appears one would again have to manually
determine an appropriate value for the dielectric constant
of the protein.

In this work, we develop a new constant pH molecular
dynamics (PHMD) technique that incorporates many of
the salient features of the aforementioned coupling ap-
proaches. The basis behind our method is a set of continu-
ous titration coordinates that describes transitions be-
tween protonated and unprotonated groups. The
continuous titration coordinate allows the protein to expe-
rience for short periods of time mixed states that can
improve the likelihood of a full titration event for a group.
For the purpose of obtaining equilibrium thermodynamic
quantities, the titration coordinate can have an arbitrary
meaning so long as the endpoints are the desired proton-
ated and unprotonated states. For our approach, in particu-
lar, a simple linear interpolation of the charges and van
der Waals (vdW) interactions is employed. This interpola-
tion procedure is similar to the methods of Borjesson and
Hunenberger24 and Baptista et al.22 Nonetheless, our
definition of a continuous titration coordinate is fundamen-
tally different, because it represents an instantaneous
microstate rather than a fractional protonation popula-
tion.

The most physically realistic simulation of titration
events would involve modeling the exchange of a proton
with surrounding water molecules. Indeed, Warshel and
coworkers26,27 have demonstrated that the simulation of
explicit proton transfer between titratable groups and
water molecules is tractable using a highly parameterized
empirical valence bond (EVB) framework.28 However,
such an approach is infeasible for more than specialized
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demonstration calculations. Since we restrict ourselves to
a macroscopic description of the solvent in this work, it is
unclear how to model proton transfer events explicitly.

As in all classical pH methods, the free energy of
titrating reference model groups must be determined,
since classical methods neglect two key energy terms of
quantum chemical origin: the free energy of solvation of a
proton in water and the free energy of formation of the
proton–oxygen/proton–nitrogen bond. In our approach,
model free energies are obtained by thermodynamic inte-
gration along the titration coordinate prior to the full
system simulation. The model free energies only need to be
calibrated once per force field.

There are many parallels between our new methodology
and the �-dynamics method of Kong and Brooks.29 In
�-dynamics, a set of continuous variables modulates be-
tween two physical endpoints, while the intermediate
states have no real physical basis. The � variables propa-
gate along with the atomic coordinates in a system de-
scribed by an extended Hamiltonian. With this frame-
work, it is possible to introduce biasing potentials in the �
coordinate to allow for dynamical transitions between the
endpoints. It is also possible to introduce multiple compet-
ing ligands in a protein pocket. In this case, the � variables
directly measure the relative affinities of the ligands.30 We
borrow a number of the ideas from �-dynamics in our new
approach. In particular, as we describe below, we intro-
duce biasing barriers between the physical endpoint states
to enhance the residency time of these protonic configura-
tions. We note that when we speak of proton residence
times below, these do not have a physical meaning in the
context of experimental properties but are a property we
manipulate to expedite convergence of thermodynamically
related properties.

In the next section, we introduce the theory behind our
new constant PHMD method. We then apply this tech-
nique in the Results section to several peptides and
proteins. Comparisons between computed pK1/2 values
and experimental pK1/2 values are made. Difficulties that
emerge in the current methodology are discussed in a final
section, and possible means to address them are described.

THEORY

The primary objective of our approach is to run classical
MD simulations on a protein under conditions of a particu-
lar (or changing) pH. To achieve an equilibrium descrip-
tion of the system at a given pH, a statistical mechanical
model, where multiple groups in the protein titrate back
and forth between protonated and unprotonated states in
response to the specified pH and the protein environment,
is developed. Consider the chemical process for proton
association/dissociation of a single titratable group, A, in a
protein with an unknown protonation free energy, �Gexp

(protein):

AH�protein�7 A�protein�
	 � H�aq�

� . (1)

This process cannot be directly described by a classical
force field approach for two reasons. First, the quantum
mechanical energy of breaking/forming the proton–oxygen

or proton–nitrogen bond is not included in classical force
fields. Furthermore, the solvation of a proton in water
cannot be easily treated, because it is not clear from
experiment and theory as to the exact value of the free
energy of proton solvation.

These two problems can be addressed through the
introduction a model compound, A(aq), which has the same
titratable group as A(protein), yet has a known experimental
pKa

exp. The proton association/dissociation reaction of the
model compound,

AH�aq�7 Aaq
	 � Haq


 , (2)

has a protonation free energy defined by

�Gexp(model) � 	log(10)kBT[pKa
exp 	 pH], (3)

where kB is Boltzmann’s constant and T is the tempera-
ture. Both of the reactions in Eqs. (1) and (2) can be
simulated classically in an approximate yet identical
fashion, such that the difference in calculated free energies
is equal to the difference in experimental free energies:

�Gexp(protein) � �Gexp(model) � �Gclass(protein)

� �Gclass(model), (4)

which leads ultimately to an estimate of the experimental
free energy of protonation for a particular site in the
protein:

�Gexp(protein) � �Gclass(protein) � �Gclass(model)

� �Gexp(model). (5)

Using Eq. (5) as a guide, titratable groups in proteins are
viewed simply as model compounds that are perturbed by
the protein environment through mainly nonbonded inter-
actions. This idea is key to simple dielectric pKa methods,
where pKa shifts from the model are assumed to be
composed of energetics differences between the model and
protein.7,31 Our approach utilizes the concept of a model
compound in a similar fashion. Because an empirical force
field Hamiltonian of a system is insufficient to describe the
changes in protonation states of titratable groups with
respect to pH, a biasing potential is introduced. This
biasing potential has two components. The first compo-
nent, analogous to the term 	�Gclass (model) in Eq. (5), is a
potential of mean force (PMF), which is the negative of the
free energy necessary to deprotonate a model compound.
The second component of the biasing potential, parallel to
�Gexp (model), biases the probability of titration events
such that in the limit of simulating the model compound of
a single titratable group in isolation, a standard titration
curve can in principle be elicited.

In order to classically simulate the titratable groups, we
first define a continuous titration coordinate, �i, which is
bounded between 0 and 1, to govern the progress of
protonation/deprotonation of a group labeled i. The �i � 0
condition corresponds to a completely protonated state,
and the �i � 1 condition corresponds to a completely
unprotonated state. Intermediate values of �i correspond
to a mixing process (described below) that develops along
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the pathway from protonation to deprotonation. In order to
restrict each titration coordinate, �i, to the range [0,1], it is
convenient to define �i as an implicit function of an
underlying coordinate, �i, through the formula,

�i � sin2(�i). (6)

The coordinate, �i, can have unrestricted values and is
ultimately the variable that is propagated in a dynamics
simulation. With unrestricted coordinates, constructs such
as Lagrange multipliers, wall potentials, and normaliza-
tions as used in �-dynamics are unnecessary.30

In practice, when the titration coordinates are allowed
to propagate dynamically, the precise endpoints �i � 0 and
�i � 1 are rarely sampled. Therefore, three approximate
macrostates are defined: protonated (P) � (0 � �i  �P),
unprotonated (U) � (1 � �i � 1 	 �P), and mixed (M) �
(1 	 �P � �i � �P), where �P is an empirically adjustable
parameter between 0 and 0.5. In our studies, we have
arbitrarily selected a value of �P � 0.1 as a compromise
between restricting the protonated and unprotonated states
to a narrow range and allowing for sufficient statistical
sampling. Given these definitions, the fractional popula-
tion of unprotonated states, Si

unprot, can be defined as

Si
unprot �

�i
U

�i
P � �i

U �
1

1 � �i
P/�i

U �
1

1 �
���i � �P�

���i � 1 � �P�

�
1

1 �
N��i � �P�

N��i � 1 � �P�

, (7)

where � is the probability of finding a particular condition,
and N is the number of times a condition is observed in an
actual simulation. The mixed regime is not included in Eq.
(7), because we do not assume that is has any inherent
physical meaning. Nonetheless, the mixed regime is a
critical pathway for simulated transitions to occur. These
definitions should not be confused with the designation of
titration coordinates in Borjesson and Hunenberger24 and
Baptista et al.22 In those works, the titration coordinate
directly represents titration probabilities; hence, all val-
ues between 0 and 1 have a physical basis.

Equating the free energy difference between the P and U
regimes with their thermodynamic probabilities,

exp��Gi
P3U

kT � � �i
P/�i

U, (8)

and then substituting Eq. (8) into Eq. (7) and noting that in
the case of an isolated ideal model compound,

�Gi
P3U � log(10)kBT[pKa

i 	 pH], (9)

we obtain the Henderson–Hasselbach (HH) relation,24,32

Si
unprot(pH) �

1

1 
 10(pKa
i 	pH)

. (10)

This relation provides an empirical measure of the ability
of our constant pH scheme to produce a physically reason-

able titration observable at least for the limiting case of an
isolated model compound. Of course, for titratable groups
in proteins, deviations from Eq. (10) are expected, since
multiple groups are often physically coupled.

Part of the reason that we do not assume physical
meaning for the mixed macrostate is that there is an
arbitrary choice in how to transform between a protonated
and unprotonated group. In our method, two mixing
processes occur. One process is the linear interpolation of
charge states22,29 of the titratable group, i,

qa � �iqa
U � �1 � �i�qa

P, a � i, (11)

where a indexes over all of the atoms in the titratable
group, i, and qa

U and qa
P are the charges of these atoms at

the unprotonated and protonated endpoints, respectively
(see Table I). The other process is the linear attenuation of

TABLE I. Charges for Protonated and Unprotonated
States of All Titratable Groups Used

Name Atom Protonated Unprotonated

Asp CB 	0.21 	0.28
CG 0.75 0.62
OD1 	0.55 	0.76
OD2 	0.61 	0.76
HD2* 0.44 0.00

Glu CG 	0.21 	0.28
CD 0.75 0.62
OE1 	0.55 	0.76
OE2 	0.61 	0.76
HE2* 0.44 0.00

Lys CE 0.24 0.40
HE1 0.08 	0.05
HE2 0.08 	0.05
NZ 	0.24 	0.98
HZ1 0.28 0.34
HZ2 0.28 0.34
HZ3* 0.28 0.00

Tyr CZ 0.11 	0.29
OH 	0.54 	0.71
HH* 0.43 0.00

His-� ND1 	0.51 	1.00
HD1* 0.44 0.00
CE1 0.32 0.30
HD2 0.13 0.10

His-ε NE2 	0.51 	1.00
HE2* 0.44 0.00
CD2 0.19 0.15
HE1 0.18 0.13

C-ter C 0.72 0.34
OT1 	0.55 	0.67
OT2 	0.61 	0.67
HC2* 0.44 0.00

N-ter N 	0.30 	0.97
HT3* 0.33 0.00

All charges were derived from the PARAM22 force field34 except for
unprotonated lysine, tyrosine, and N-terminus and protonated C-
terminus (see text for details).
*Indicates which proton disappears in a linear fashion from the vdW
potential as the unprotonated state is approached. These charges were
designed to be used with the PARAM22 force field, such that the net
charge of each residue at the titration endpoints is an integer.
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the nonbonded vdW interaction29 between the proton of
the titratable group and the surrounding protein environ-
ment as the state proceeds from protonated to unproto-
nated. The modified vdW potential, U�vdW, for the interac-
tions of the proton with other atoms is

U�vdW � � �1 � �i�UvdW�i, p�
�1 � �i��1 � �j�UvdW�i, j� , (12)

where i and j are titrating protons, and p indexes all other
atom types, and UvdW is the standard classical 6,12
Lennard–Jones potential as used in CHARMM.33 In our
model, we do not take into account changes in the internal
energy potentials between protonation states. Further-
more, we maintain the mass of the proton even in the
unprotonated state. In addition, we do not allow the atomic
radii of the titrating species to change between the proton-
ated and unprotonated endpoints. This is perhaps a short-
coming, since the change in charge states between the
protonated and unprotonated forms may lead to slightly
different vdW radii for some of the atoms. For instance, the
negative charge on the unprotonated carboxylate ion leads
to slightly larger vdW radii for the oxygen atoms (1.77 Å)
versus the protonated form (1.7 Å) in the PARAM22 force
field.34 Nonetheless, the protons in this force field are
completely embedded inside heavy atoms. Thus, the dielec-
tric boundary should not change significantly based on the
presence or absence of protons. Overall, the nonproton
vdW radii issues may affect the vdW potential, the dielec-
tric boundary in the generalized Born (GB) implicit solvent
model, and the surface area for the hydrophobic free
energy term.

As stated above, an essential feature of our method is a
biasing potential consisting of the negative of the model
potential and a pH-dependent component. The model
potential can be thought of as a way to correct for the
arbitrary classical description of the titration pathway and
endpoints. In the case of simulating an isolated model
compound with its own PMF subtracted, the resultant
PMF should be flat. Given a flat PMF, one can then build in
a pH-dependence for the model compound that approxi-
mates the desired characteristics [e.g., Eq. (10)].

The model potential, Umodel
i , is a PMF along the titration

coordinate, �i, of an isolated model compound embedded in
solvent. The potential is obtained in this work via thermo-
dynamic integration,

Umodel
i ��� ��

0

� ��Usystem����

���
�

��

d��. (13)

Because of our particular choice in describing the titration
pathway and the fact that we utilize an implicit solvent,
the PMF of a model compound is essentially quadratic in
nature with respect to � and, hence, can be fit to a
two-parameter parabolic function of the form,

Umodel
i ��i� � 	Ai��i � Bi�

2 � 	Ai�sin2��i� � Bi�
2. (14)

Given the PMF, the classical free energy, �Gclass (model),
of protonating the model compound can be defined as

�Gclass
i (model) � Umodel

i �� � 0�

� Umodel
i �� � 1� � � Ai�2Bi � 1�. (15)

The other component of the biasing potential imparts
pH dependence on the simulation. This component is
derived by analogy to Eq. (3) and assumes that the
chemical potential of adding a fractional proton to the
aqueous environment is linear with respect to �i,

UpH
i ��i� � log(10)kBT � �i � [pKa,1

ref 	 pH]. (16)

If one were to simulate an isolated model compound at
pH � pKa

ref, where Eq. (14) and the negative of Eq. (14) are
added to a classical force field potential, converged thermo-
dynamic sampling would lead to two results. First, the free
energy difference between the two titration endpoints
would be zero. Furthermore, for all points along the
titration coordinate, the free energy would be constant. At
pH � pKa

ref, Eq. (16) can be used to reproduce the HH
titration curve for an isolated model compound. We demon-
strate this in the Results section.

A practical consideration in our model is that the
residency time in the protonated or unprotonated basin
should be sufficiently long to allow for the protein conforma-
tion to relax. This criterion can be justified in part by the
experimental observation that there exist minima and
transition barriers associated with proton transfer be-
tween titratable groups and water molecules.26 Further-
more, sampling of the protonated and unprotonated mac-
rostates should be maximized to acquire converged
thermodynamic properties in a reasonable amount of
simulation time. Finally, it is desired that interacting
titratable groups should see each other most of the time in
their physically meaningful protonated/unprotonated mac-
rostates. One way to impose these conditions is to intro-
duce an energy barrier at the center of the titration path,

Ubarr
i ��i� � � 4���i �

1
2�

2

, (17)

where the parameter � determines the maximal height of
the barrier. A value for � of 1.25 kcal/mol was chosen for
our work, because it provides a reasonable compromise
between protonated/unprotonated residency time and sam-
pling efficiency (see Results section). Because Eq. (17) is
symmetric in �i, it lowers both endpoints equally and
therefore has no effect on the relative energy of the
endpoints. Although there is a physical precedent for
employing a barrier term, the endpoint residency times
that we incur via Eq. (17) and � � 1.25 are not expected to
correlate with experimental kinetic data.

Given the constructs developed above, the complete
potential, Utotal, in our approach involving n titratable
groups can now be elaborated,

742 M.S. LEE ET AL.



Utotal � Uinternal � UvdW������ � Uelec������ � UGB������

� Unonpolar � �
i�1

n

� � Umodel
i ��i��i�� � UpH

i ��i��i�� � Ubarr
i ��i��i���,

(18)

where � and � are the composite vectors of the n titration
coordinates. The Uinternal term involves the bond, angle,
and torsional energy terms of a classical force field, which
in this work are not coupled to the titration coordinates.
The potential Uelec is the classical Coulombic energy,

Uelec � k �
ab

qaqb

rab
, (19)

where a and b are atomic indices, k � 332 (Å kcal)/[mol
(atomic charge)2], qa is the charge on atom a, and rab is the
internuclear distance between atoms a and b. The function
UGB is a slight modification of the GB solvent potential of
Still et al.,35

UGB � �
1
2 k� 1

εsolute
�

1
εsolv

� �
ab

qaqb

	rab
2 � �a�bexp�	rab

2 /K�a�b�
,

(20)

where K is assigned a value of 8,36 which provides im-
proved correspondence to Poisson results compared to the
original value of 4.35 The Born radii, �a, are obtained
analytically via the GB molecular volume (GBMV2)
method.36 The precise expression for Born radii is some-
what involved for this discussion and can be found else-
where.36 In all cases, the charges, qi, are implicit functions
of the � vector as specified in Eq. (11). In this study, the
solvent dielectric, �solv, was set to 80, and the solute
dielectric, �solute, was set to 1. Exceptions to this are the
two static pKa calculations, which permitted direct compari-
son to Poisson-based methods where �solute was set to 20
(see Results section). As mentioned in the Introduction,
our hypothesis is that proper sampling over solute configu-
rations, even with a continuum solvent representation,
will alleviate the need to introduce an arbitrary scaling
parameter, �solute � 1.18 The complete the description of
our solvent model, a nonpolar surface area term, Unonpolar

� �SA, is also employed, where � � 20 cal/(mol-Å2), and SA

is the solvent-accessible surface area with a probe radius
of 1.4 Å calculated using the algorithm specified in Lee et
al.36 However, the nonpolar term is not a function of the
titration coordinate. Finally, we note that although we use
a continuum, “implicit” solvent in the present calculations,
the formalism described above is applicable to detailed
atomic solvent models as well.

Essential to our constant PHMD approach is to use an
extended Hamiltonian-like formalism to treat the underly-
ing titration coordinates, �i, as fictitious particles with
mass, Mi. We introduce a kinetic energy term for the
titration coordinates,

TPHMD �
1
2 �

i

Mi�̇i
2, (21)

that is analogous to the kinetic energy term used in the
�-dynamics approach of Kong and Brooks.29 The value of
Mi governs the responsiveness of the titration coordinate
to the dynamical forces of the system. A small mass allows
for fast propagation of titration processes, whereas a large
mass will produce slower transitions. A mass larger than 2
amu appears to be necessary to guarantee adequate
numerical precision in the integration of the dynamical
simulation when a conventional timestep of 2 fs is used.
We have chosen all Mi to be 10 amu as a compromise
between the responsiveness of the titration coordinate and
the precision of the numerical integration of the equations
of motion.

METHODS
Model Compounds and Model Potential
Determination

Model compounds in this work are the blocked form of
the amino acids obtained by acetylating the N-terminus
(ACE), and amidating the C-terminus (CT2). For the
models of the titratable N-termini, an alanine was ap-
pended to the first residue, NH3


-X-A-CT2, because there
were insufficient force field parameters in PARAM22 for
the molecule, NH3


-X-CT2, where X is any amino acid.
The PMF, Umodel

i , for each model compound was deter-
mined via thermodynamic integration. Since the analyti-
cal form of our target function is given in Eq. (14), the
coefficients, Ai and Bi, were obtained by fitting the deriva-
tive of the model function with respect to �,

�Umodel
i ��i�

��i
�

��	Ai�sin2�i � Bi�
2�

��i

� 2 � Aisin�2�i��sin2�i � Bi�, (22)

to ensemble-averaged derivatives, ��E
��i
�, which were ob-

tained by MD simulations at fixed points along the �
coordinate. For our study, model compound simulations of
500 ps (100 ps equilibration/400 ps production) were
performed at each of the following seven values of �, which
evenly cover the range between 0 and �/2: 0.2, 0.4, 0.6, 0.8,
1.0, 1.2, and 1.4. It was determined that the C- and
N-termini for each amino acid needed to have distinct
model functions. The justification for this decision is that
the 1-3 and 1-4 exclusions of the force field influence the
electrostatic interactions between the titrating terminal
groups and the side-chains of their residue.37 One of the
most notable examples of this issue can be seen in the
comparison of the alanine and valine C-termini. The
carbon atom of the titrating carboxylate group in alanine
has no electrostatic interaction with any of the atoms in
the methyl side-chain. In contrast, the same C atom in
valine electrostatically interacts with all six of the hydro-
gens bonded to the C�’s, which have a net total charge of

0.54. This disparity and others analogous to it lead to a
large difference in the calculated classical free energy of
protonation of the C-termini between alanine and valine,
even though the residues are chemically very similar.

The method outlined in this work has the limitation that
an atom can be involved in only one titratable group. This
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restriction precludes certain representations of naturally
occurring tautomers. In most cases, rotation about a single
bond is sufficient to allow for tautomerism (e.g., aspartic
acid and lysine).38 However, one important exception is
the histidine residue, which has two titratable sites: N�

and N�. The precise description of histidine requires three
competing tautomers: one doubly protonated form and two
singly protonated forms. From a simple quantum chemical
calculation, it is seen that each state has a unique set of
atomic charges on the imidazole ring. Because the two
titratable groups involve the same atoms, the proper
charge state description of each tautomer is impossible in
our model. However, a reasonable approximation that is
tractable is to split the imidazole ring into two titratable
halves: (N�-H, C�-H) and (N�-H, C�-H). A remaining issue,
which is independent of the choice of classical charge
description, is avoidance of double deprotonation, an occur-
rence known not to occur at biologically relevant pH
values. A simple approach, which is employed by others,38

is to introduce a strong energy penalty for the double
deprotonation occurrence. In our method, an energy term,
K�1�2, is added to the potential, where K has been set to 50
kcal/mol. As both �’s approach one (i.e., double deprotona-
tion), the penalty takes full effect.

Table I illustrates the charge models used for all of the
titratable groups in this work. Most of the atomic charges
were derived from the PARAM22 force field. However, not
all titration states exist in PARAM22. The missing states
are unprotonated lysine, tyrosine, and N-terminus and
protonated C-terminus. For unprotonated lysine and ty-
rosine, we extracted electrostatic potential-derived (ESP)
charges39 from HF/6-31G* calculations using the GAUSS-
IAN98 software.40 For the unprotonated N-terminus, the
remaining negative charge after removing the proton was
placed on the nitrogen. For the protonated C-terminus,
charges values and internal coordinate parameters were
replicated from the analogous carboxylate side-chain of
the Asp residue.

Simulation Protocols

Our approach has been implemented as a module
(PHMD) in a development version of CHARMM.33 In order
to run the module, a formatted input file is required, which
consists of sections for each model compound. Each section
specifies a name, its pKa

ref, the two parameters, A and B,
charge states for the protonated/unprotonated forms, and
labeling of the proton that will disappear in the vdW
potential. Given this input file, the PHMD module identi-
fies all of the matching groups in the system. It is also
possible for the user to select only a subset of groups to
titrate.

All of the simulations described in this work were
performed with the all-atom PARAM22 force field34 and
GBMV2 implicit solvent model.36 The GBMV2 model was
parameterized to obtain finite-difference Poisson con-
tinuum electrostatic solvation energies with an average of
�1% error. To improve computational speed, Born radii
were updated every other timestep. This adjustment does
not appear to adversely affect simulation results (results

not shown). A new peptide backbone potential energy
map41 was also used. This map was derived from high-
level ab initio quantum calculations. The SHAKE algo-
rithm was applied to hydrogen bonds and angles, so that a
2 fs timestep could be used. Nonbonded electrostatic and
vdW cutoffs for protein simulations were applied with a
switching function starting at 18 Å and ending at 20 Å.
The seeds for random generation of initial velocities for
each individual simulation were selected randomly. There-
fore, a repeat simulation, as was done for two of the
proteins, provided estimates of sampling errors.

All simulations in this work utilized a Nosé–Hoover42,43

thermostat to ensure that the atomic velocities achieved a
canonical distribution at a constant temperature of 298 K.
We have found that it is important as well to thermostat
the titration progression variables. Therefore, we couple
the � velocities to a three-mass (30, 50, and 70 amu)
Nosé–Hoover chain.44 This approach assures that the �
velocities also obtain a canonical distribution at the de-
sired temperature of 298 K.

Modifications of the Force Field

One of the key features of the simulations in this work is
the use of the GB implicit solvent method. While it has
been shown36 that the particular GB approach we use here
is a faithful representation of the Poisson continuum
dielectric electrostatic solvation energy,45 it is not evident
that the GB/Poisson implicit solvent model utilizing
PARAM22 charges and radii accurately reproduces experi-
mental results pertaining to solvation free energies of
small molecular systems.17 Actually, the PARAM22 force
field34 was originally optimized for use with the explicit
water force field, TIP3P.46 Therefore, minor modifications
of the vdW radii and/or charges may be necessary to
optimize the PARAM22 force field for use with the GB/
Poisson model.

It is beyond the scope of this work to completely reparam-
eterize the PARAM22 force field for the purposes of
GB-based simulations. Nonetheless, we made one modifi-
cation of a vdW radius, since it improved pK1/2 results
dramatically. It was seen that the carboxylate oxygens in
the unprotonated forms of Asp, Glu, and the C-terminus
were too readily forming hydrogen bonds with other
groups in the protein. This occurrence perhaps meant that
these oxygens rarely were exposed to the solvent and
hence were not in a position to titrate (i.e., accept protons).
To ameliorate this situation, we scaled the radii of these
carboxylate oxygen atoms by 0.95 to enhance their self-
polarization solvation energies. This modification was
intended to achieve a better balance between solvent
exposure and internal hydrogen bond formation.

The convergence of protonation state sampling may be
slow if there are large conformational barriers in the
protein; for instance, the carboxylate-proton dihedral (H-O-
C-O) for aspartic acid, glutamic acid and the C-terminus
has a sizeable barrier to rotation (�2 kcal/mol) between
the E and Z conformations. This leads to a very slow
switching rate and the need for extensive sampling to yield
fully converged populations. Since our aim is to employ
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simulation times on the order of 1 ns (at a given pH), we
have resolved this particular issue by lowering this dihe-
dral barrier to 0.25 kcal/mol. A drawback to this solution is
that unphysical out-of-plane conformations may be stabi-
lized in the protein environment. An alternate solution,
not implemented in this work, would be to allow for
competing E and Z tautomers.

Barriers can also arise solely from the nature of a
particular protein environment. To overcome these barri-
ers, it would be necessary to use advanced sampling
techniques, such as replica exchange, which is known to
significantly improve sampling efficiency.47 However, im-
proved sampling methodologies are beyond the scope of the
present study.

Protein Data Set

Four proteins comprise the systems examined in this
study: turkey ovomucoid (1OMT),48 bovine trypsin inhibi-
tor (1BPTI),49 hen egg white lysozyme (193L),50 and
ribonuclease A (7RSA).51 For the NMR entry, 1OMT, only
the first structure was used and the hydrogen atoms were
subsequently removed. For all structures, hydrogen atoms
were added using the HBUILD facility in CHARMM.33

Statistical Analysis of Constant-pH Simulations

The primary objective in this work is to calculate pK1/2

values for the titratable groups in a protein. We can
estimate these pK1/2 values by running simulations at
different pH values and fitting the calculated unproto-
nated fraction, Si

unprot [see Eq. (7)] to a more generalized
version of the HH formula32:

S�HH(pH) �
1

1 
 10	W(pH	pK1/2) , (23)

where W is a width parameter. The values of W and pK1/2

are derived from this fit. For a titratable group that has no
interactions with other titratable groups, W has a theoreti-
cal value of 1. On the other hand, strongly interacting
titratable groups will have values of W much different
than 1 and will probably poorly fit to Eq. (23).

Moreover, it is important to determine whether the
continuous titration variables remain at the approximate
endpoints the majority of the time, such that unphysical
mixed states do not interfere with the sampling of protein
conformational space. The purity percentage, defined as
Q � 100%* (Nprot 
 Nunprot)/Ntot, where Ntot is the total
number of snapshots, measures the percentage of time
spent at the protonated and unprotonated macrostates.
Values of Q around 70–80% at the pK1/2 are probably
optimal, since some mixed states must be sampled to
facilitate switching between the two endpoints. Another
important measure is the titration endpoint lifetime,
which is approximated as the total simulation time divided
by the number of times the titration coordinate, �, passes
above or below the halfway point, 0.5.

Alternative Free Energy Techniques for
Calculating pK1/2 Values

Besides the PHMD method, there are other means of
obtaining pK1/2 values from MD simulations. For instance,

several researchers have shown that pKa values can be
approximated by free energy techniques such as LRA,9,18,19

thermodynamic integration (TI),52 and Gaussian fluctua-
tion analysis.53 In order to compare our PHMD results to
an alternative framework using the same force field and
GB potential, we performed TI on single titrating groups.
Our TI procedure involved titrating a specific group, i, over
15 windows (�i � 0.1, 0.2, …, 1.5) for 60 ps each (10 ps
equilibration/50 ps production) at pH � pKi

model. All of the
other titrating groups, j, were fixed at the protonation
states ascertained by their pKj

model. In the cases that pH �
pKj

model, the group j was protonated. The free energy of
unprotonating the group and resultant pKa shift from the
model, were calculated by trapezoidal integration over the
ensemble-averaged derivatives in each window. The pKa’s
obtained by this technique are approximate since site–site
interactions are not taken into account.

RESULTS AND DISCUSSION

Before studying the results of this method, it is impor-
tant to verify that the GBMV2 model is capable of reproduc-
ing the static pK1/2 results of the Poisson continuum
model. The methods for static pK1/2 determination for both
continuum and GB approaches are described elsewhere
(the MEAD program was used to computer continuum
pK1/2 values.7,54 Figure 1 indicates excellent agreement
between GBMV2 and MEAD pK1/2 values for the two small
proteins, 1OMT and 1BPI. The solute dielectric constant
for this comparison was set to 20.8,12

The model compound parameters obtained by TI are
presented in Table II. It is important to note that the
calculated free energy of protonation for various termini
have wide variation. This is due in large part to the
above-mentioned interaction terms associated with the 1-3
and 1-4 exclusions found in most modern force fields.37

An initial test case for our PHMD method is the single
titration of a blocked aspartic acid: ACE-Asp-CT2. The
titration curve for blocked aspartic acid using a titration
barrier of 1.25 kcal/mol is shown in Figure 2. The best-fit
HH-type curve [Eq. (23)] has a near optimal W value of
1.03. However, the pK1/2 value derived from the best fit is
4.3, which is somewhat higher than the model pK1/2 value

Fig. 1. Comparison of GBMV versus MEAD for calculated pK1/2

values of various titratable groups in the static structures of two proteins:
turkey ovomucoid (Turkey) and bovine pancreatic trypsin inhibitor (BPTI).
Charges and vdW radii were obtained from the PARAM22 force field and
Table I. A solid line indicating y � x is displayed for comparison.
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of 4.0. This discrepancy is expected to approach zero as the
model and production simulation times approach infinity
(i.e., as we achieve complete sampling). Figure 3 shows
how the percentage of time spent in a pure state ap-
proaches 100% as the barrier height is increased. Since the
mixed region (0.1  �  0.9) is unphysical in our model,
this graph clearly shows that it is important to include a
barrier in the model potential. Figure 4 indicates that the
mean lifetime of a titration endpoint increases exponen-
tially as a function of the barrier height. On the one hand,
longer lifetimes allow the protein time to relax around a
titration endpoint. On the other hand, as the endpoint
lifetimes increase, longer simulation times will be required
to guarantee that all relevant configurations of protona-
tion states have been adequately sampled. Thus, ulti-
mately, a compromise between titration state purity and
lifetime magnitude must be achieved. Our choice of a
barrier height of 1.25 kcal/mol allows for a purity of �70%
and an endpoint lifetime of �1.5 ps.

Titration curves for the blocked Asp-Asp dipeptide are
presented in Figure 5. Note that the two pK1/2 values are
shifted above and below 4.3, the simulated pK1/2 value of
the single residue Asp. There are two possible reasons for
this behavior. First, the interaction of the two titratable
groups is likely to cause pK1/2 shifts in opposite directions.
One can see a small deviation from ideal HH behavior,
which may be evidence of interaction between the two
sites. Because the calculation of the cross-correlation of
the Asp1 and Asp2 � trajectories at pH � 4 suggests only a

TABLE II. Parameters for Model Potentials

Group pKa (exp)a Ab Bb �Gclass(model)c

Asp 4.0 67.74 0.2042 40.07
Glu 4.4 68.18 0.1741 44.44
Lys 10.4 78.43 0.6788 	28.05
Tyr 9.6 81.15 	0.0195 84.31
His-� 6.6 84.65 0.3167 31.03
His-ε 7.0 89.17 0.3939 18.92
CT-Ala 3.8 81.27 0.1523 56.51
CT-Val 3.8 80.10 0.2042 47.39
CT-Leu 3.8 80.28 0.1796 51.44
CT-Asp 3.8 81.22 0.1579 55.57
CT-Cys 3.8 81.38 0.1963 49.43
NT-Ala 7.5 90.94 0.9950 	90.03
NT-Ser 7.5 91.51 1.1346 	116.14
NT-Arg 7.5 89.99 1.0363 	96.52
NT-Lys 7.5 89.71 1.0420 	97.25
aValues of pKa (exp) are from the Nozaki and Tanford65 except for
His-� and His-ε.66

bThe method for calculation of the parameters A and B is described in
the text.
cThe classical free energy of protonating the model compound
�Gclass(model) is obtained via Eq. (15).

Fig. 2. Titration curve for blocked aspartic acid. Simulations at pH � 2,
3, 4, 5, and 6 were each run for 10 ns (� � 1.25 kcal/mol). Filled circles
correspond to actual values obtained for each simulation. The solid curve
indicates the optimal HH fit [Eq. (23)], where the calculated pK1/2 value is
4.3 and W has a near optimal value of 1.03.

Fig. 3. Percentage of time that a titration state is pure (�  0.1 or � �
0.9) as a function of barrier height for blocked aspartic acid. Simulations at
pH � 4 were run for 14 ns at each value of the barrier height.

Fig. 4. Mean titration state lifetime as a function of barrier height for
blocked aspartic acid. Results were extracted from the same simulations
used in Figure 3. Lifetime is calculated as the total simulation time divided
by the number of times � crosses above and below 0.5. Lifetime values
may be slightly overestimated, since snapshots of � were only recorded
every 10 timesteps (20 fs).

Fig. 5. Titration curves for both aspartic acid groups of the blocked
Asp-Asp dipeptide. Simulations at pH � 2, 3, 4, 5, and 6 were each run for
10 ns. The curves indicate optimal HH fits where the W values were also
allowed to vary [Eq. (34)]. The two calculated pK1/2 values are 4.19 (W �
0.80) and 4.74 (W � 0.68).
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minor anticorrelation of the two groups (results not shown),
a more plausible explanation is that the eletrostatic envi-
ronment of the two titratable groups is somewhat different
from that of the model compound. Both sites see one of
their blocked groups replaced with the peptide bond.

Constant pH simulations on four proteins have been
performed to compare calculated and experimental pK1/2

values (see Tables III–VI). The first two proteins, turkey
ovomucoid (turkey) and BPTI, were run twice with differ-
ent initial velocity seeds to estimate the convergence of
pK1/2 statistics for 1 ns simulations. We find that the
difference between the two simulations for some residues
can be as much as 2–3 pK units. The titration curves for
the ten residues in BPTI using data from one of the 1 ns
simulations are shown in Figure 6. In general, the deproto-
nation fractions fit well to the HH form, although some
deviations exist, probably due to insufficient sampling.

It has been shown in previous works that free energy
techniques such as LRA and TI can be used to determine
intrinsic pKa values and pK1/2 values.9,18–20,52 Therefore,
an alternative technique, TI, was used to estimate pK1/2

values to determine to what extent the errors in PHMD
are dependent on the continuous titration scheme. TI
results are presented for BPTI. We estimate the sampling
error in the TI results to be 0.5 pK unit based on dividing
the simulations in half (results not shown), although the
true errors could be larger since the simulations were
relatively short. Interestingly, the overall error with the TI
approach is roughly the same. Nonetheless, the total
simulation time for the TI calculations (9 ns) was 50%
more than the PHMD calculations (6 ns). The TI and
PHMD results are farther away from each other (average
absolute deviation � 1.1 pK units) than either is to
experiment (a.a.d. � 0.9 pK units). There are several
possible explanations. First, neither method has achieved
sampling convergence. Moreover, TI-based pKa shifts are
derived from the free energy difference between the two
precise endpoints, whereas PHMD results are derived
from protonation populations at approximate endpoints
(see Theory section). Finally, the TI simulations do not
explicitly take into account interactions between two or

TABLE III. Calculated pK1/2 Values of the 6 Acidic Groups
in Turkey Ovomucoid

Residue PHMD MEAD Null Exp.

Asp7 4.5 (0.2) 3.1 4.0 2.7
Glu10 5.1 (0.2) 4.0 4.4 4.1
Glu19 2.7 (1.7) 1.3 4.4 3.2
Asp27 6.1 (1.0) 3.4 4.0 2.3
Glu43 6.0 (0.3) 4.4 4.4 4.8
CT-Cys56 4.6 (0.0) 3.4 3.8 2.7

Avg. abs. error 1.2 0.8 1.0

Simulations of 1 ns (where 200 ps was allotted to equilibration) were
performed at pH � 0, 2, 4, 6 and 8. Two sets of PHMD simulations with
different initial velocity seeds were run. The average value between
the two sets is reported, with half the difference in parentheses. All
titratable groups (including basic residues) were allowed to titrate.
MEAD results were obtained with PARAM22 vdW radii and charges
with Table I charges using ε � 20. Experimental values at 10mM KCl
were obtained from Schaller and Robertson.67

TABLE IV. Calculated pK1/2 Values for Bovine Pancreatic
Trypsin Inhibitor

Residue PHMD TI MEAD Null Exp.

NT-Arg1 7.6 (0.7) 8.1 7.2 7.5 8.1
Asp3 1.8 (0.6) 4.1 2.1 4.0 3.0
Glu7 4.1 (0.9) 5.1 2.9 4.4 3.7
Lys15 9.4 (0.2) 9.2 10.5 10.4 10.6
Lys26 9.9 (0.6) 10.2 10.7 10.4 10.6
Lys41 10.5 (0.6) 10.5 11.5 10.4 10.8
Lys46 9.4 (0.0) 10.8 10.2 10.4 10.6
Glu49 4.7 (0.2) 6.8 3.3 4.4 3.8
Asp50 2.2 (0.2) 4.4 1.6 4.0 3.4
CT-Ala58 4.1 (0.1) 3.1 2.8 3.8 2.9

Avg. abs. error 0.9 0.9 0.6 0.5

Simulations at pH � 0, 2, 4, 6, 8, and 10 were each run 1 ns (200 ps of
equilibration and 800 ps of production). Two sets of PHMD simula-
tions with different initial velocity seeds were run. The average value
between the two sets is reported, with half the difference in parenthe-
ses. TI results were obtained via the scheme elaborated in the Methods
section. MEAD results were obtained with PARAM22 vdW radii and
charges from Table I using ε � 20. Experimental values were obtained
from Brown et al.68,69 and Richarz and Wuthrich.70

TABLE V. Calculated pK1/2 Values for
Hen Egg White Lysozyme

Residue PHMD Null PDLD BKvG Exp.

NT-Lys1 2.2 7.5 7.9 (0.1)
Lys1 10.2 10.4 10.8 (0.1)
Glu7 4.4 4.4 2.4 3.2 2.85 (0.25)
Lys13 11.8 10.4 10.5 (0.2)
His15 10.9 6.8 5.36 (0.07)
Asp18 1.1 4.0 1.6 3.3 2.66 (0.08)
Tyr20 8.3 9.6 10.3
Tyr23 10.7 9.6 9.8
Lys33 8.6 10.4 10.6 (0.1)
Glu35 5.8 4.4 4.3 12.3 6.2 (0.1)
Asp48 0.2 4.0 4.1 0.0 1.6 (0.4)
Asp52 5.8 4.0 3.6 8.7 3.68 (0.08)
Tyr53 11.8 9.6 12.1
Asp66 	1.0 4.0 	0.3 1.5 0.9 (0.5)
Asp87 3.7 4.0 0.1 	0.2 2.07 (0.15)
Lys96 10.9 10.4 10.8 (0.1)
Lys97 9.9 10.4 10.3 (0.1)
Asp101 6.7 4.0 3.3 4.7 4.09 (0.07)
Lys116 9.6 10.4 10.4 (0.1)
Asp119 3.0 4.0 2.2 	0.5 3.20 (0.09)
CT-Leu129 1.6 3.8 n/a 3.3 2.75 (0.12)

Avg. abs. error 1.6 1.0
Avg. abs. error

(acidic groups
only)

1.5 1.4 1.2 2.1

Simulations at pH � 0, 2, 4, 6, 8, 10, and 12 were each run for 1 ns (200
ps of equilibration/800 ps of production). Experimental values were
obtained from Baptista and Soares,38 where averages and uncertain-
ties were extracted from the range of values supplied in that work.
BKvG corresponds to the results of Bürgi et al.,21 which were averaged
over their pH � 2, 3, and 4 simulations. PDLD corresponds to the
results of Sham et al.9

CONSTANT-pH MOLECULAR DYNAMICS 747



more titrating groups. This issue could be rectified by
employing an (ad hoc) effective dielectric approximation9

or by running multidimensional TI.
In the turkey ovomucoid and BPTI results (Tables III

and IV), we included the MEAD static pK1/2 results for
comparison. This particular static continuum model has
results that are on par with ours. As a note, our MEAD
results do not reflect the state-of-the-art. Configurational
averaging techniques can provide further improvements.
For example, the work of van Vlijmen et al.,10 which also
uses a dielectric constant of 20, yielded pK1/2 results with
average absolute errors of about half those from the null
hypothesis. Furthermore, configurational averaging over
the charged and uncharged states using the LRA tech-

nique provides accurate results while requiring smaller
dielectric constants.9,14,19

Results for lysozyme and RNase are presented in Tables
V and VI. In Table V, we have included, for comparison,
the averaged results of Bürgi et al.,21 which only contained
predictions for the acidic residues, Asp, Glu, and C-
terminus. The constant pH method of Burgi et al.21 is an
approach where protonation states and conformational
states of a protein are sampled in an explicit solvent
environment. Their simulation of lysozyme entailed the
explicit treatment of nearly 6000 water molecules. We also
include the results of the protein dipoles–Langevin dipoles
(PDLD) method of Sham et al.9 In their method, intrinsic
pKa values were obtained via the LRA, which involved
averaging the PDLD solvent energy over MD conforma-
tions generated in the charged and uncharged state of
titratable group. Then, pK1/2 values were obtained by
interacting all titratable groups through an ad hoc effec-
tive dielectric function.9 As one can see, our results have
an accuracy on par with the method of Sham et al. and are
somewhat more accurate than those from the method of
Bürgi et al.

For all the protein results, the overall absolute pK1/2

error is about 1.6 pK units. This is somewhat less accurate
than the best empirical approaches based on scaled con-
tinuum electrostatic methods and closer to the accuracy
achieved from the null hypothesis. In some cases, we
predict the wrong titration state at the physiological pH of
7. This error usually occurs because the pKa shift is either
predicted to have the wrong sign or because it is too large.
With its present parameterization, our approach is there-
fore not yet an optimal tool for assigning the appropriate
protonation states at specified pH for modeling and simula-
tion purposes. Nevertheless, our results indicate that
significant microscopic relaxation of the protein conforma-
tion around the titratable groups occurs in response to pH
changes and these are key in modeling pH-dependent
phenomena. Had relaxation not occurred, the PHMD
method would yield very large pKa shifts (�10 pK units),
analogous to values computed by setting the dielectric
constant to 1 in a static pKa method. In fact, we tested this
assertion by running constant pH simulations on lysozyme
while holding the heavy atoms fixed. We found that except
for a few surface groups, the predicted pKa shifts were very
large and led to pKa values beyond the pH values of the
simulations.

The apparent paradox of our results and others who
have attempted to simulate the solute microscopi-
cally9,18,21,53 is that methods which incorporate more
physics and are computationally more intensive do not
necessarily lead to more accurate results. Warshel and
coworkers suggest that microscopic approaches often have
poorer accuracy because small pKa shifts are derived from
the summation of large opposing energetic quantities.9

Furthermore, small errors (e.g., on the order of 1–2
kcal/mol), in the physical representation of the system will
lead to prominent errors in the determination of small pKa

shifts. It is likely that schemes that dampen electrostatic
terms through nonunity dielectric constants reduce the

TABLE VI. Calculated pK1/2 Values for the “Acidic”
(pKa < 8) Residues of Ribonuclease A

Residue PHMD Null Exp

NT-Lys 1 6.6 7.5 7.6
Glu 2 	1.0 4.4 2.8
Glu 9 5.8 4.4 4.0
His 12 2.8 6.8 6.2
Asp 14 3.5 4.0 2.0
Asp 38 2.4 4.0 3.1
His 48 7.7 6.8 6.0
Glu 49 6.4 4.4 4.7
Asp 53 4.5 4.0 3.9
Asp 83 7.4 4.0 3.5
Glu 86 5.9 4.4 4.1
His 105 10.8 6.8 6.7
Glu 111 5.8 4.4 3.5
His 119 7.5 6.8 6.1
Asp 121 3.3 4.0 3.1
CT-Val 124 	1.0 3.8 2.4

Avg. abs. error 2.1* 0.7

*Average absolute error assumes endpoints where there are only
inequalities. Simulations at pH � 0, 2, 4, 6, and 8 were each run for 1
ns (200 ps of equilibration/800 ps of production). All titratable groups
(including basic residues) were allowed to titrate. Experimental
values were obtained from Antosiewicz et al.8

Fig. 6. Titration curves for the ten groups of BPTI from one of the two
sets of simulations at pH � 0, 2, 4, 6, 8, and 10. Symbols correspond to
the actual titration state observables, S. The curves are fitted via Eq. (23).
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effect of the errors in the physical representation. For
example, some simple dielectric continuum models can
achieve results better than the null hypothesis even
though they avoid explicit representation of the proton and
instead smear the positive charge onto the heavy atoms of
the group.

There are many factors that may have contributed to the
lack of quantitative agreement with experimental pKa

values. Limitations of the implicit solvent model, limita-
tions of the force field, inadequate treatment of titratable
group tautomers, sampling convergence, and theoretical
limitations of the continuous titration scheme are just a
few which warrant further investigation. We believe that
one of the most important sources of error in our method is
the GB implicit solvent model, which in its present form
may not be accurate enough to reliably deduce small pKa

shifts when the solute dielectric is set to 1. The GBMV2
model that we used is one of the most accurate approxima-
tions to the molecular surface Poisson model in the litera-
ture to date.36,55 However, the Poisson model, for which
GB is based, is a continuum dielectric approximation that
is imperfect. One the one hand, it has been shown that
continuum solvent models can be quite reliable in reproduc-
ing the experimental solvation energy of small neutral
organic compounds.17 On the other hand, continuum sol-
vent models tend to perform inadequately for most charged
species, which are in fact the critical components of this
work. For example, negatively charged aspartic and glu-
tamic acid model compounds have solvation energies that,
compared to explicit solvent results, are predicted too
unfavorably by roughly 10 kcal/mol.56,57 Studies56,57 show
that for charged species, certain atomic radii can be
modified to achieve better correspondence between im-
plicit electrostatic solvation energies and results derived
from explicit water. In the case of the carboxylate group, a
reduction of the atomic radii of the carboxylate oxygen by
�0.3 Å produces the desired solvation energy results.56,57

However, the effectiveness of radii modification is unclear
when the charged group is embedded in a protein.57 Also,
large radii modifications may adversely affect the GB
charge-charge interactions [Eq. (20)]. In the Methods
section, we mentioned that Asp, Glu, and C-termini resi-
dues did not titrate correctly unless the radii of the
carboxylate oxygen were scaled by 0.95, corresponding to a
radii reduction of �0.1 Å. However, since we made radii
modifications to the carboxylate oxygens in both the
charged and neutral state, perhaps the smaller reduction
was a compromise between no modifications (for the
neutral state) and larger reductions for the charged state.
Obviously, a more technically correct approach would be to
allow the atomic radius of the carboxylate oxygen to
linearly interpolate between the two titration endpoints.
GB treatment of the positively charged amine groups of
lysine and N-termini may also have similar problems.
Since most of the amine groups in our protein test are
surface exposed, the errors probably cancel between the
model and protein environments. However, one notable
exception is NT-Lys1 in lysozyme. The average Born
radius of the N-terminal nitrogen (�3 Å) is larger the

radius found in the isolated model compound (�2 Å). It is
possible that the spuriously predicted pKa value is due to
an incorrect treatment of the desolvation penalty. Careful
analysis and comparison to explicit solvent results is
warranted.

Besides problems associated with the energetics of ion-
ized states, implicit solvent models (or imperfect force
fields in general) may cause distortions to the X-ray
structure,58 which can lead to compounding errors in the
estimation of pK1/2 values. A case in point is the His12
residue of ribonuclease, which has a calculated pK1/2 value
that is shifted tremendously lower than the experimental
result. The X-ray structure of ribonuclease A reveals that
the � proton, which is bonded to N�, is exposed to the
solvent in a narrow pocket. However, in MD simulations at
pH � 2, N� becomes unprotonated and acts as a hydrogen
bond acceptor to specific residues which approach only
during dynamics (i.e., these residues were farther than 2 Å
away in the X-ray structure). At pH � 2, for example, the
N�-H group of His119 forms a hydrogen bond to the N� of
His12. Furthermore, at pH � 6, the N� of His12 forms two
hydrogen bonds: one with the peptide N-H group of
Phe120, and one with the N�-H group of Gln11. Appar-
ently, given the force field that we employed, the formation
of these hydrogen bonds at both pH values is more
energetically favorable than the solvation of the � proton.

One approach to move toward more accurate treatment
of the molecular system would be to add in a few layers of
explicit water molecules in a hybrid solvent scheme.57,59

The local interactions between titratable groups and ex-
plicit water molecules would be more physically realistic
than the continuum description. Thus, this procedure
might alleviate structural distortions that the generalized
Born solvent model has induced. The caveat here, how-
ever, is that titration events would need to occur on a
sufficiently slow timescale to allow for water rearrange-
ments. In the mean-field treatment of GB/Poisson theory,
the solvent instantaneously polarizes in response to
changes in the titration state, and for the purpose of
equilibrium calculations this is an asset. However, in an
explicit solvent calculation, the nearby water molecules
would have to rotate to interchange their roles as hydrogen
bond donors and acceptors to the titrating group. The
timescale for such an event has been estimated to be
around 2–3 ps.23 In our formalism, the titration timescale
could be increased by either increasing the titration coordi-
nate mass, M, or the barrier term, �. Of course, the fact
that the closest water molecules have to make large
rearrangements in response to a titration event is an
artifact of a simplistic classical description. In a more
realistic treatment, a protonated group could simply trans-
fer its proton to the oxygen of a water molecule that had
been a hydrogen bond acceptor to the proton.26–28,60

Another related source of potential error in our current
model is the integration of empirical force field and
implicit solvent. The combination of GB with the PARAM22
force field may not be consistent, since the force field was
developed with the TIP3 explicit solvent model.34 Another
problem, which is general to most classical force fields, is
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that the charges for each atom type are fixed regardless of
the surrounding environment. Charges in fixed-charge
force fields are often polarized from the in vacuo ab initio
results to mimic solvent polarization.61,62 While this pre-
scription may be appropriate for the treatment of model
compounds and surface residues, it is unclear whether it is
valid for residues buried beneath the surface. Small
changes in the charge distribution of a titratable group
could amount to discrepancies of a few kilocalories per
mole, which could easily skew predictions of pKa values.
Improvements such as fluctuating charge models62,63 will
hopefully resolve this issue.

Another area where our approach could be improved is
in the treatment of tautomers of titratable groups. In a
continuum model that utilizes a large solute dielectric
constant and hence attenuates interactions between the
titratable group and its local environment, this problem is
subdued.38 However, in a microscopic solute approach
such as ours, a naı̈ve treatment of isomerism may be
problematic. A more elaborate approach would be to allow
competing tautomers, in much the same way that �-
dynamics incorporates competing ligands for a binding
pocket.64 With this approach, it would be possible to treat
the histidine residues correctly as four competing tauto-
meric states. This would also address the tautomeric
issues concerning the carboxylate group of Asp, Glu, and
C-terminus and the amine groups of Lys and N-terminus
in a more aesthetic manner.

The case of Asp83 in ribonuclease A points out another
issue for future consideration regarding our representa-
tion of the protonated carboxylate oxygen. Here, the
calculated pK1/2 value is too large by about 4 pK units.
Upon closer inspection of the trajectory generated during
the simulations at lower pH values, it appears that the
Asp83 proton is stabilized in a hydrogen bond to the O� of
Thr45 and, hence, the deprotonation event is pushed to a
higher pH than expected. The caveat, however, is that the
proton is out-of-plane from the carboxylate moiety of the
Asp. Thus, it is evident that a reduction of the natural
barrier for the E7 Z transition from 2.05 to 0.25 kcal/mol
has led to the creation of a non-native hydrogen bond,
which in turn, skews the calculated pK1/2 value.

Convergence errors, which are problematic in any method
where values are derived by sampling, also play a role in
our present approach. Even with 1 ns of sampling, some of
the pKa values in the turkey and BPTI results deviated by
more than 1 pK unit between separate runs. Sampling
errors are expected to be even more evident for buried
titratable groups, since protein relaxation may require
overcoming large energy barriers. Also, it is difficult to
know when a sufficient number of protonation and confor-
mational states have been sampled to obtain converged
results. In fact, simply looking at the number of possible
protonation states, 2n (where n is the number of titratable
groups) for a given protein, one can see that complete
sampling is likely intractable for a short simulation time.
For example, lysozyme which has 22 titratable groups in
our approach, has approximately 4 million protonation
states. Of course, many of these states have extremely low

probabilities at a given pH owing to their unfavorable
energies. Sampling of conformational states of the protein
is also a difficult problem given that averaging needs to
take place over multiple plausible hydrogen bonding and
side-chain packing patterns.

Given the limitations in quantitative accuracy of our
current method and others which treat the solute micro-
scopically,9,18,21,53 what are the advantages of microscopic
solute models compared to simpler models which employ
electrostatic scaling through nonunity dielectric con-
stants? First, microscopic solute methods provide a means
of studying pH-dependent conformational changes. It is
critical that they do not require the manual assignment of
solute dielectrics, which may transform in nontrivial ways
as a function of conformation. A prominent example would
be a simulation of the denaturation pathway of a protein,
where a buried residue moves from a low dielectric environ-
ment to a high dielectric environment upon surface expo-
sure. Furthermore, manually assigning a dielectric con-
stant is difficult in the cases of buried residues where no
experimental pKa data is available.14 Also, microscopic
solute methods can provide insight into how local protein
structure rearranges and relaxes in response to titration
events. Specifically, one can observe how hydrogen bond-
ing and side-chain packing patterns change as a function
of pH and protonation state. Finally, microscopic-solute
pH methods provide a stringent test for force fields and
implicit solvent models and thus can be used as a bench-
mark in the evaluation of newly emerging models.

CONCLUSIONS

In this work, we have presented a new technique to
integrate pH with molecular dynamics simulations. Deter-
mination of pK1/2 values for titratable groups was reason-
ably successful, given our aim of eliminating ad hoc
dielectric constant scaling and instead relying on the
microscopic conformational relaxation of the protein at-
oms.9,18,19 Nonetheless, our results are not as reliable as
those obtained by simple dielectric models in which electro-
statics are reduced by an ad hoc scaling factor. We have
pointed to possible ways to improve this model to move
toward accurate pKa predictions. These steps are the focus
of ongoing studies and include (1) careful parameteriza-
tion of the implicit solvent force field by modification of
specific atomic radii, (2) explicit inclusion of all possible
tautomers, and (3) inclusion of layers of explicit water
molecules to improve the local physical description of the
titratable groups. Another outstanding issue is the proper
choice of titration coordinate barrier to obtain the best
balance between sampling efficiency and physically realis-
tic endpoints.

While further efforts must be invested to improve its
accuracy, our new procedure provides a framework for
studying pH-dependent conformational changes in pro-
teins in a relatively efficient manner, particularly when
coupled with efficient conformational sampling approaches
such as replica-exchange MD.47 Such pH-dependent phe-
nomena for future study might include pH-based protein
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unfolding/refolding, pH-dependent ligand binding, and
pH-based biological activity.
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42. Nosé, S. A Unified formation of the constant-temperature molecu-
lar-dynamics method. J Chem Phys 1984;81:511–519.

43. Hoover WG. Canonical dynamics—equilibrium phase–space dis-
tributions. Phys Rev A 1985;31:1695–1697.

44. Martyna GJ, Klein ML, Tuckerman M. Nosé–Hoover chains: the
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