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L. INTRODUCTION

Molecular dynamics simulation, which provides the methodology for detailed MICroscopi-
cal modeling on the atomic scale, is a powerful and widely used tool in chemistry, physics,
and materials science. This technique is a scheme for the study of the natural time evolu-
tton of the system that allows prediction of the static and dynamic properties of substances
directly from the underlying interactions between the molecules.

Dynarmical simulations monitor uime-dependent processes in molecular systems in
order to study their structural, dynamic, and thermodynamic properties by numerically
solving an equation of motion, which is the formulation of the rules that govern the motion
executed by the molecule. That is, molecular dynamics (MD) provides information about
the time dependence and magnitude of fluctuations in both positions and velocities,
whereas the Monte Carlo approach provides mainly positional information and gives only
little information on time dependence. _ '

Depending on the desired level of accuracy, the equation of motion to be numerically
solved may be the classical equation of motion (Newton’s}, a stochastic equation of motion
(Langevin’s), a Brownian equation of motion, or even a combination of quantum and
classical mechanics (QM/MM, see Chapter 11).

Good reviews of the application of dynamic simulation methods to biomolecules
can be found in the books by Brooks et al. [1} and McCammon and Harvey [2]. Good
short reviews on this topic can also be found in Refs, 3-5. More detailed discussions of
dynamic simulation methodologies can be found in books by Allen and Tildesley [6],
Frenkel and Smit [7], and Rapaport {8] and in the review by van Gunsieren [9].
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H. TYPES OF MOTIONS

Macromolecules in general, and proteins in particular, display a broad range of characteris-
tic motions. These range from the fast and localized motions characteristic of atomic
fluctuations to the slow large-scale motions involved in the folding transition. Many of
these motions, on each and every time scale, have an important role in the biological
function of proteins. For example, localized side-chain motion controls the diffusion of
oxygen into and out of myoglobin and hemoglobin [1}. A more extensive *‘'medium-scale”
structural transition is involved, for example, in the hemoglobin R to T allosteric transition,
which makes it such an efficient transport agent [1]. Finally, prion proteins exhibit a global
structural transition of biological importance. These proteins undergo a global transition
from an o-helical structure to a predominantly B-sheet structure, which is implicated in
the onset of Creutzfeldi-Jacob disease (CJD) in humans and the ‘‘mad cow’” disease in
cattle (bovine spongiform encephalopathy; BSE) [10]. ' '

Table 1 gives a crude overview of the different types of motion executed by a protein
and their characteristic time scales and amplitudes. These should be regarded as rough
guidelines, because individual motions in specific systems may differ significantly from
these estimates. Note that the motions executed by a protein span almost 20 orders of
magnitude in characteristic time scales, from femtoseconds (107 s} to hours (1¢°~107 s).
They also cover a wide range of amplitudes (0.01-100 A&) and energies (0.1-100 kcal/
mol). ' ,

An important characteristic of biomolecular motion is that the different types of
motion are interdependent and coupled to one another. For example, a large-scale dynamic
transition cannot occur without involving several medium-scale motions, such as helix
rearrangements. Medium-scale motions cannot occur without involving small-scale mo-
tions, such as side-chain movement. Finally, even side-chain motions cannot occur without
the presence of the very fast atomic fluctuations, which can be viewed as the ‘‘lubricant™’
that enables the whole molecular construction to move. From the point of view of dynamic

Table 1 An Overview of Characteristic Motions in Proteins

Functionality Time and

Type of motion - examples amplitude scales

Local motions 7 Ligand docking flexibility Femtoseconds. (fs) to picosec-
Atomic fluctuation Temporal diffusion pathways onds {ps) (107"-107% s); less
Side chain motion : than 1 A

Medium-scale motions '
Loop motion Active site conformation adap- Nanoseconds (ns) to micro-
Terminal-arm motion tation seconds (ps) (107°-107¢ s);
Rigid-body motion Binding specificity 1-5 A _ ' :

Large-scale motions ' o A
Domain motion Hinge-bending motion Microseconds (its) to milli-
Subunit motion Allosteric transitions - seconds (ms) (1074-1073 g),

: 5-10 A

Global motions A
Helix-coil transition Hormone activation Milleseconds (mé) to hours
Folding/unfolding . Protein functionality ' (107*-10* s); more than 10 A

Subunit association
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simulations, this'has serious implications. It indicates that even in the study of slow large-
scale motions (of biological importance) it is not possible to ignore the fast small-scale
motions, which eventually are the ones that impose limitations on the simulation time
step and length. '

. THE STATISTICAL MECHANICS BASIS OF MOLECULAR
DYNAMICS

A classical system is described by a classical Hamiltonian, H, which is a function of both
coordinates r and momenta p. For regular molecular systems, where the potential encrgy
~ function is independent of time and velocity, the Hamiltonian is equal to the total energy,

where K(p) is the kinetic energy, U(r) is the potential energy, p; is the momentum of
‘particle 7, and m; the mass of particle i{. A microscopic state of the system is therefore
characterized by the set of values {r, p}, which corresponds to a point in the space defined
by both coordinates r and momenta p (known as ‘‘phase space’”).

To obtain thermodynamic averages over a ‘‘canonical’’ ensemble, which is charac-
terized by the macroscopic variables (N, V, T), it is necessary to know the probability of
finding the system at each and every point (= state) in phase space. This probability
distribution, p(r, p), is given by the Boltzmann distribution function,

_ op [~H@ pYkT - | @
z |

where the canonical partition function, Z, is an integral over all phase space of the Boltz-
mann factors exp [—H(r, p)/k;T], and k; is the Boltzmann factor. Once this distribution

p(r, p)

function is known it can be used to calculate phase space averages of any dynamic variable

A(r, p) of interest. Examples for dynamic variables are the position, the total energy, the
kinetic energy, fluctuations, and any other function of r and/or p. These averages,

o

(Al p)), = f drf

) dp p(r, p)A(r, p) (3)

are called ‘‘thermodynamic averages'’ or ‘‘ensemble averages’ because they take into
account every possible state of the system. However, in order to calculate these thermody-
namic averages, it is necessary to simultaneously know the Boltzmann probability [Eq.
{2)] for each and every state {r, p}, which is an extremely difficult computational task.

An alternative strategy for calculating systemwide averages is-to follow the motion
of a single point through phase space instead of averaging over the whole phase space
all at once. That is, in this approach the motion of a single point (a single molecular state)
through phase space is followed as a function of time, and the averages are caiculated
only over those points that were visited during the excursion. Averages calculated in this
way are called ‘‘dynamic averages.”” The motion of a single point through phase space
is obtained by integrating the system’s equation of motion. Starting from a point {r(0),
p(0)}, the integration procedure yields a trajectory that is the set of points {r(t), p()}

Lt A
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describing the state of the system at any successive time 7. Dynamic averages of any
dynamical variable A(r, p) can now be calculated along this trajectory as follows:

(A(r, p) = % L A(r(D), p(thdt | - L@

where T is the duration of the simulation. Compared to the previous approach, dynamic
averaging is easier to perform. The two averaging strategies can be summarized as follows:

Thermodynamic average. An average over all points in phase space at a single time.
Dynamic average. An average over a single point in phase space at a/l times.

It is hoped that the point that is being dynamically followed will eventually cover
all of phase space and that the dynamic average will converge to the desired thermody-
namic average. A key concept that ties the two averaging strategies together is the ergodic
hypothesis. This hypothesis states that for an infinitely long trajectory the thermodynamic
ensemble average and the dynamic average become equivalent to each other,

dim (A(r, p)), = (A(r, P))z (5)

F
In other words, the ergodic hypothesis claims that when the trajectory becomes long
enough, the point that generates it will eventually cover all of phase space, so the two
. averages become identical. For this hypothesis to hold, the system has to be at equilibrium
(technically, at a stationary state). Also, there must not be any obstacle, such as a frag-
mented topology, that will prevent an infinitely long trajectory from covering all of phase
space. A system that obeys these two conditions is said to be ergodic, and its hypothesis
is the theoretical justification for using motecular dynamic simulations as a means for
calculating thermodynamic averages of molecular systems. It is tacitly assumed that finite
molecular dynamics trajectories are ‘‘long enough’ in the ergodic sense.

IV. NEWTONIAN MOLECULAR DYNAMICS
A. Newton’s Equation of Motion

The temporal behavior of molecules, which are quantum mechanical entities, is best de-
scribed by the quantum mechanical equation of motion, i.e., the time-dependent Schrod-
inger equation. However, because this equation is extremely difficult to solve for large
syslems, a simpler classical mechanical description is often used to approximate the mo-
tion executed by the molecule’s heavy atoms. Thus, in most computational studies of
biomolecules, it is the classical mechanics Newtonian equation of motion that is being
solved rather than the quantum mechanical equation.

In its most simplistic form, Newton’s equation of motion (also known as Newton’s

second law of motion) states that
Fi = ma; = mi, o . ' 6

where F| is the force acting on particle i, m; is the mass of particle i, g, is its acceleration,
“and 7, is the second derivative of the particle position r with respect to time. The force F;
is determined by the gradient of the potential energy function, U(r), discussed in Chapter 2,
which is a function of all the atomic coordinates r, :
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Fi= -V.U(r) | ()

Equation (7) is a second-order differential equation. A more general formulation of
Newton’s equation of motion is given in terms of the system’s Hamiltontan, H [Eq. £1)).
Put in these terms, the classical equation of motion is written as a pair of coupled first-

order differential equations:

o= OO, O p) C®
aPk . ar

_ By substituting the definition of H {Eq. (1)] into Eq. (8), we regain Eq. (6). The
first first-order differential equation in Eq. (8) becomes the standard definition of momen-
tum, i.e., p; = m;7; = m,v,, while the second turns into Eq. (6). A set of two first-order
differential equations is often easier 1o solve than a single second-order differential equa-

tion.

B. Properties of Newton’s Equation of Motion

Newton’s equation of motion has several characteristic properties, which will later serve
as “‘handles’’ to ensure that the numerical solution is correct (Section V.C). These proper-

ties are

Conservation of energy. Assuming that U and H do not depend explicitly on time
or velocity (so that dH/d¢t = ), it is easy to show from Eq. (8) that the total
derivative df{/dt is zero; i.e., the Hamiltonian is a constant of motion for New-
ton’s equation. In other words, there is conservation of total energy under
Newton’s equation of motion. :

Conservation of lincar and angular momentum.  If the potential function U depends
only on particle scparation (as is usual) and there is no external field applied,
then Newton's cquation of motion conserves the total linear momentum of

the system, P,
P = Z Pi _ ' ' : )
and the total angular momentum, L,

L=Zr,-><p;=Zm,-r,-><f,- | (10)

Time reversibility. The third property of Newton’s equation of motion is that it 1s
reversible in time. Changing the signs of all velocities (or momenta) will cause
the molecule to retrace its trajectory. If the equations of motion are solved
correctly, then the numerical trajectory should also have this property. Note,
however, that in practice this time reversibility can be reproduced by numeri-
cal trajectories only over very short periods of time because of the chaotic
nature of large molecular systems.
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C. Molecular Dynamics: Computational Algorithms

Solving Newton’s equation of motion requires a numerical procedure for integrating the
differential equation. A standard method for solving ordinary differential equations, such
as Newton’s equation of motion, is the finite-difference approach. In this approach, the
molecular coordinates and velocities at a time ¢ + Af are obtained (to a sufficient degree
of accuracy) from the molecular coordinates and velocities at anearlier time 1. The equa-
tions are solved on a step-by-step basis. The choice of time interval A7 depends on the
properties of the molecular system simulated, and At must be significantly smaller than
the characteristic time of the motion studied (Section V.B).

A good starting point for understanding finite-difference methods is the Taylor

expansion about time ¢ of the position at ume r + A¢,

r(t + A = () + FOAL + %f(z)mz SR an

Alternatively, this can be written as
r(} + A = r(t) + v(HAr + %a(r)At2 + - ' ‘ | (12)

“where v(z) is the velocity vector and a(r) is the acceleration. Because the integration pro-
ceeds in a stepwise fashion, and recalling Eq. (6), it i1s convenient to rewrite the above
expansion in a discrete form. Using r, to indicate the position at step # (at time f) and
I+ t0 indicate the position at the next step, n + 1 (at time ¢t + At), Eq. (12) can be

written as

Twey = T, + v, AL + 1(F—) Arr + O(AP) ' o (13)
2\m _
where O(At") is the terms of order A#" or smaller. With this information the velocity v,

at time n + 1 can be crudely estimated, for example, as
Var1 = (rn+l - rn)/z . (14)

Together, Egs. (13) and (14) form an integration algorithm. Given the position r,, the
velocity v,, and the force F, at step n, these equations allow one to calculate (actuaity,
estimate) the position r,,, and velocity v, at step n + 1. The formulation is highly trivial
and results in a low quality integration algorithin (large errors). Other, more accurate,
algorithms have been developed using the same kind of reasoning. In the following sub-
sections we survey some of the more commonly used finite-difference integration algo-
rithms, highlighting their advantages and disadvantages.

1. Verlet Integrator :

The most common integration algorithm used in the study of biomolecules is due to Verlet
[11]. The Verlet integrator is based on two Taylor expansions, a forward expansion (¢ +
At) and a backward expansion (f — Af),

= v A+ %(ﬂ

)Aﬁ + O(AP) ' (15a)
o o _
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r,.; = r, + v,At + 1 5) AP — O(AP) _ ' (15b)
2\m
The sum of the two expansions yieids an algorithm for propagating the position,
Foep = 2T, --r,,_] + F, A + O(ArY) - ' (16)
_ m - L

Translated into a stream of commands, this algorithm is executed in two steps:

1. Use the current position r, to calculate the current force F,.

2. Use the current and previous positions r, and r,_; together with the current
force F, (calculated in step 1) to calculate the position in the next step, r,.,
according to Eq. (16)..

These two steps are repeated for every time step for each atom in the molecule. Sub-
tracting Eq. (15b) from Eq (15a) yields a complementary algorithm for propagating the
velocities, | -

_ Py 7 Ty 3‘ .
v, = —— + O(Ar 17
s (AF9) _ (17

Figure 1a gives a graphical representation of the steps involved in a Verlet propaga-
tion. The algorithm embodied in Egs. (16) and (17) provides a stable numerical method
for solving Newton’s equation of motion for systems ranging from simple fluids to bio-
polymers. Like any algorithm, the Verlet algorithm has advantages as well as disadvan-
tages.

@ t-at ft-atm U | tedt2 ] 14at D) voat [teav2 | 1 |teava| teat

r

Figure 1 A stepwise view of the Verlet integration algorithm and its variants. (a) The basic Verlet
method. (b) Leap-frog integration. (¢) Velocity Verlet integration. At each algorithm dark and light
gray cells indicate the initial and calculating variables, respectively. The numbers in the cells repre-
sent the orders in the calculation procedures. The arrows point from the data that are used in the
calculation of the variable that is béing calculated at each step.
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Advantages of the Verlet algorithm are

1. The position integration is quite accurate [errors on the order of O(A#)] and
is independent of the velocity propagation, a fact that simplifies the position
integration and reduces memory requirements.

2. The algorithm requires only a single force evaluation per integration cycle (com-
putationally, force evaluations are the most ‘‘expensive’’ part of the simulation).

3. This formulation, which is based on forward and backward €xpansions, guaran-
tees time reversibility (a property of the equation of motion).

Disadvantages of the Verlet algorithm are

L. The velocity propagation is subject to relatively large errors, on the order
O(Ar*). Recall that an accurate estimate of the velocity is required for the Kinetic
energy evaluations. An added inconvenience is that v, can be computed only
if r,,, is already known,

2. Further numerical errors are introduced when an O(As?) term is added to an

O{A®) term.

3. The Verlet algorithm is not ‘‘self-starting.”” A lower order Taylor expansion
[e.g., Eq. (13)] is often used to initiate the propagation,

4. It must be modified to incorporate velocity-dependent forces or temperature

scaling.

2. Leap-Frog Integrator . :
Modifications to the basic Verlet scheme have been proposed to tackle the above deficien-
cies, particularly to improve the velocity evaluation. One of these modifications is the
leap-frog algorithm, so called for its half-step scheme: Velocities are evaluated at the mid-
point of the position evaluation and vice versa [12,13]. The algorithm can be written as

Fui) = Fp + Vopdt _ (18a)
F,

Varin = Va-ip + — At _ (18b)
m .

where v,.,; stands for the velocity at the mid-step time ft = (1/2)Ar]. Elimination of the
velocities from these equations shows that the method is algebraically equivalent to the
Verlet algorithm. Cast in the form of execution instructions, the leap-frog algorlthm in-
volves three steps:

1. Use the current position r, to calculate the current force F..
Use the current force F, and previous mid-step velocity v,_;, to calculate the

next mid-step velocity v,.ip. ‘
3. Use the current position r, and the next mid-step velocity v,,,, (from step 2)

to caiculate the position in the next step, | SN

Figure 1b gives a graphical representation of the steps involved in the leap-frog
propagation. The current veloc1ty v,, which is necessary for calculating the kinetic energy,
can be calculated as

Vo = (Varin + Vo122 U (19)

e L e
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Advantages; of the leap-frog algorithm are

1. It improves velocity evaluation.
2. Thedirect evaluation of velocities gives a useful handle for controlling the SImu-

lation temperature (via velocity scaling).
3. It reduces the numerical errors, since here O(At') terms are added to O(At“)w

terms.
Disadvantages of the leap-frog algorithm are

1. It still does not handle the velocities in a corhpletely satisfactory manner, be-
cause the velocities at time ¢ are only approximated by Eq. (19).
2. This algorithm is computationally a little more expensive than the Verlet algo-

rithm.

3. Velocity Verlet Integrator

An even better handling of the velocities is obtained by another variant of the basic Verlet
integrator, known as the *“velocity Verlet’ algorithm. This is a Verlet-type algorithm that
stores positions, velocities, and accelerations all at the same time ¢ and minimizes round-
off errors [14]. The velocity Verlet algorithm‘ 1S written

Foe1 = T, + V,AL + 1 (5) A ' (20a)
2\m o :
Vo =¥, + 2 [E + L} Ar o , (20b)
2lm m .

Again, elimination of the velocities from these equations recovers the Verlet algo-
rithm. In practice, the velocity Verlet algorithm consists of the following steps:

1. Calculate the position r,. at time ¢ + At from Eq. (20a).
Calculate the velocity at mid-step v,.,» using the equation

1{F, '
Vutriz = ¥y + = (’_—) At : (21)
2\m/ ' :
3. Calculate the force F,, at time ¢ + Ar.
4, Finally, complete the velocity move to v, by using
1 (F, o |
Vsl = Yarin + "( +I) At . : (22)
2\ m .

At this point, the kinetic energy at time ¢ + At is available. Figure 1c gives a graphical
representation of the steps involved in the velocity Verlet propagation.
Advantages of the velocity Verlet algorithm are

. Itis numerically very stable. _

2. Ttis convenient and simple [the code of this method is a straightforward tran-
scription of Egs. (20)-(22)].

3. It provides an accurate evaluation of velocities and hence of the kinetic energy.
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The main disadvantage of this algorithm is that it is computationally a little more
expensive than the simpler Verlet or leap-frog algorithms (though the added accuracy
often outweighs this slight overhead).

V. MOLECULAR DYNAMICS: SIMULATION PRACTICE

A. Assigning Initial Values

Newton’s equation of motion is a second-order ditferential equation that requires two
initial vatues for each degree of freedom in order to initiate the integration. These two
wnitial values are typically a set of initial coordinates {r(0)} and a set of initial velocities
{v(O)}.

1. Initial Coordinates

The initial coordinates {r(0)} are usually obtained from experimentally determined molec-
ular structures, mainly from X-ray crystallography and NMR experiments. Alternatively,
the initial coordinates can be based on computer models generated by a variety of modeling
techniques (see Chapters 14 and 15). Note, however, that even the experimentally deter-
mined. structures must often undergo some preparation steps before they can be used as
initial structures in a dynamic simulation.

First, it is not possible to determine hydrogen atom positions by X-ray crystallogra-
phy. Thus the coordinates for the many hydrogen atoms in the molecule are missing from
X-ray coordinate files. These coordinates must be added to the initial structure before the
simulation is started. Several algorithms are available for ensuring reasonable placement

of hydrogens.
In some cases, whole parts of the protein are missing from the experimentally deter-

mined structure. At times, these omissions reflect flexible parts of the molecule that do
not have a well-defined structure (such as loops). At other times, they reflect parts of
the molecule (e.g., terminal sequences) that were intentionally removed to facilitate the
crystallization process. In both cases, structural models may be used to fill in the gaps.

After all the coordinates are accounted for, it is good practice to refine the initial
structure by submitting it to energy minimization (see Chapter 4). The role of this minimi-
zation is to relieve local stresses due to nonbonded overlaps, as well as to relax bond
length and bond angle distortions in the experimental structure. The origin of these stresses
is due both to the empirical nature of the energy function (Chapter 2) and to the average
nature of the experimentally determined structures.

2. Initial Velocities ,

Unlike the initial coordinates, which can be obtained experimentally, the only relevant
information available about atomic velocities is the systern’s temperature 7, which deter-
mines the velocity distribution. In the absence of a better guideline, initial velocities (v,
Vy, V) are usually randomly assigned from the standard Maxwellian velocity distribution
at a temperature T,

1”2 ) : '
v (2nkgr) P [ 2kBT} " @3

This initial assignment is, of course, not at equilibrium. In particular, the expected
velocity correlation between neighboring atoms is not guaranteed, and most likely it is
nonexistent (i.e., in general, neighboring atoms, such as bonded pairs, are expected to

S A T
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move at similar velocities). Furthermore, the random assignment process may accidentally
assign high velocities to a localized cluster of atoms, creating a *‘hot spot’” that makes
the simulation unstable. To overcome this problem, it is common practice to start a simula-
tion with a “‘heat-up’” phase. Velocities are initially assigned at a low temperature, which\
is then increased gradually allowing for dynamic relaxation. This slow heating continues
until the simulation reaches the desired temperature.

In practice, heating is performed by increasing atomic velocities, either by reas-
signing new velocities from a Maxwellian distribution [Eq. (23)] at an elevated tempera-
ture or by scaling the velocities by a uniform factor. This heating process, as well as (he
dynamic simulation that follows, requires a measurable definition of the system’s tempera-
ture 7 at time ¢. According to the equipartition theorem, the temperature, 7(z), at any given
time ¢ is defined in terms of the mean kinetic energy by

Naor

. 1 9 . :
T(@) = D> mivil? : (24)
kpN gor Z’ : '

where Ny, is the number of unconstrained degrees of freedom in the systém (Ng; = 3N
— n, where N is the number of atoms and » is the number of constraints). It is clear from
this expression that scaling the velocities by a factor of [Ty/T(#)]"* will result in a mean
- kinetic energy corresponding to a desired temperature 7. _

Another problem related to the initial velocity assignment is the large total linear
momentum P and total angular momentum L formed [Eqgs. (9) and (10)]. These momenta
cause a drift of the molecule’s center of mass relative to the reference frame. Numerically,
this drift hampers the computational efficiency of the simulation, overshadowing the
smaller internal motions by the physically irrelevant transiational drift and global rotation.
Because Newton’s equation of motion conserves linear and angular momenta, these mo-
menta will not go away unless they are actively taken out. The ideal zero-drift situation
is reached by periodically zeroing these momenta during the equilibration phase of the

simulation.

B. Selecting the Integration Time Step

The size of the time step At is an important parameter that determines the magnitude of
the error associated with each of the foregoing integration algorithms. On the one hand,
a small time step means better integration quality. But on the other hand it also means
that more integration steps are required for the same length of simulation. Thus, every
simulation involves a trade-off between economy and accuracy. The time step in molecular
dynamics simulations is one of the most important factors that balance this trade-off. In
general, one would like to choose the largest possible time step that will still ensure an
accurate simulation. :

An appropriate time step should be small by comparison to the period of the fastest
motion (highest frequency motion) in the system being simulated. If T is the period of
the fastest motion, a good rule of thumb for selecting At is ' '

AL = 20 : (25)

For biomolecules, such as proteins, the fastest motions are the stretching vibrations
of the bonds connecting hydrogen atoms to heavy atoms (X—H stretching). The frequency
of these motions is in the vicinity of 3000 cm™, which means periods of about 10 fs (1
X 107" s). Thus, an appropriate time step for simulating biomolecules would be Ar =
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0.5 fs. This extremely small time step is the main reason that, with only a few exceptions,
molecular dynamics simulations are limited today to the nanosecond (1077 s5) time scale.
Naturally, much effort is invested in developing advanced algorithms that allow for
larger time steps that enable longer simulations. A basic rationale, common to many such
approaches, is to remove the fast (high frequency) motions from the numerical integration
and account for them in some other way. Because of the characteristic coupling between
types of motion (Section IILAY}, this task is far from simple. A first step in this direction
is to take the X — H stretching motions out of the numerical integration. If these stretching
motions were accounted for in some other way, then the time step would be determined
by the next fastest molecular motion, i.e., the X — X stretching modes with frequencies
around 1500 cm ™. According to relation (25}, this elimination will increase the time step
by a factor of 2 (to Az = 1.0 fs), extending the length of the simulation by a similar factor
at only a slight additional computational cost. g
The algorithm that is usually employed to account for the hydrogen positions is |
i SHAKE [15,16] (and its variant RATTLE [17]). Stated in a simplistic way, the SHAKE
L algorithm assumes that the length of the X—H bond can be considered constant. Because
in a numerical simulation there are always fluctuations, this means that the deviation of
the current length d,(r) of the kth bond from its ideal (constant} bond length d,° must be
smaller than some tolerance value €,

s = [du(0)? — dif)dy < e (26)

: SHAKE is an iterative procedure that adjusts the atomic positions (of the hydrogen
i ' atoms in this case) after each integration step (of the heavy atoms) in order to simulta-
necusly satisfy all the constraints. It iterates until s, is smatler than € for all values of k,
o (A more detailed description of the algorithm can be found in Refs. 14 and 16 and in
appendix A1.4 of Ref. 2.) SHAKE can be applied not only to X-—H type bonds but also
' {0 all bond-stretching motions in the system, allowing for time steps as large as 2 or 3 fs
' (depending on the details of the system). Although, SHAKE can in principle be applied ‘
to bending motions too, it was found that such constraints result in low quality simulations.
This is due to the fact that the important coupling between bond angle motion and torsional
motion is neglected [18].
More advanced methods for extending the length of molecular dynamics simulations

are discussed in Section VIIL

C. Stability of Integration

An important issue in any numerical study is that of the accuracy and stability of the
simulation. A simulation become unstable when it has picked up errors along the way
and has become essentially meaningless. In general, it is unrealistic to expect that any
approximate method of solution will follow the exact classical trajectory indefinitely. It
is our goal, however, to maintain a stable simulation for at least the duration of interest
for the specific study. Thus, the stability of the simulation must be gauged at all times.
If one is lucky, an unstable simulation will also crash and not reach its designated termina-
tion. It may happen, however, that even though the unstable simulation reaches its desig-
nated termination, its content carries little merit.

The best gauges for the stability of any simulation are the constants of motion of
the physical equation that is numerically solved, i.e., quantities that are expected to be
conserved during the simulation. Since numerical fuctuations cannot be avoided, a dy-
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namic variable A(r,p) is considered numerically ‘‘conserved’’
to its value is below an acceptable tolerance €, AA/A < .

51

if the ratio of its Auctuations
The constants of motion for

Newton’s equation of motion were specified in Section IV.B.

Conservation of energy. Newton’s equation of motion conserves the total energy

of the system, E (the Hamiltonian), which is the sum of potential and kinetic
energies [Eq. (1)]. A fluctuation ratio that js considered adequate for a numer;-

cal solution of Newton’s equation of motion is

AE

_ ~ AE) |
=2 <10 or io — < -4 : 29
7 g0 E) (29)

Conservation of linear and angular momenta. - After equilibrium is reached, the

total linear momentum P [Eq. (9)] and total angular momentum 7. [Eq. (10)]
also become constants of motion for Newton’s equation and should be con-
served. In advanced simulation schemes, where velocities are constantly ma-
nipulated, momentum conservation can no longer be used for gauging the

~_stability of the simulation.

Timefeversibz‘[ity Newton’s equation is reversible in time. For a numertcal simu-

lation to retain this property it should be able to retrace its path back to the
initial configuration (when the sign of the time step A7 is changed to —Ap),
However, because of chaos (which is part of most complex systems), even
modest numerical errors make this backtracking possible only for short periods
of time. Any two classical trajectories that are initially very close will eventu- -
ally exponentially diverge from one another. In the same way, any small per-
turbation, even the tiny error associated with finite precision on the computer,
will cause the computer trajectories to diverge from each other and from the
exact classical trajectory (for examples, see pp. 76-77 in Ref. 6). Nonetheless,
for short periods of time a stable integration should exhibit temporal revers-
ibility.

D. Simulation Protocoi and Some Tricks for Better Simulations

Every molecular dynamics simulation consists of several steps. Put together, these steps
are calied a **simulation protocol.”” The main steps commnon to most dynamic simulation

protocols are the following.

L.

2.

Preparation of the data.  Preparation of the initial coordinates (adding hydro-
gen atoms, minimization) and assignment of initial velocities, '
Heating up. Gradual scaling of the velocities to the desired temperature, ac-
companied by short equilibration dynamics. '
Equilibration. A refatively long dynamic simulation, whose goal is to ensure
that the simulation is stable and free of erratic fluctuations. This step may take
from tens of picoseconds to several hundred picoseconds.

Production. When the simulation is “‘equilibrated,”” the dynamic simulation
is considered reliable. From this point on, the trajectory generated is stored for
further analysis. Typical “‘production runs”’ take from several hundred picosec-
onds up to tens of nanoseconds (depending on the size of the system and the
available computer power).
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5. Analysis. The resulting trajectory is submitted to careful analysis. (Refer to
Section VL)

We have presented a simple protocol to run MD simulations for systems of interest.
There are, however, some *‘tricks’’ to improve the efficiency and accuracy of molecular
dynamics simulations. Some of these technigues, which are discussed later in the book,
are today considered standard practice. These methods address diverse issues ran ging from
efficient force field evaluation to simplified solvent representations.

One widely used trick is to apply bookkeeping to atom-atom interactions, com-
monly referred to as the neighbor list [11], which is illustrated in Figure 2. If we simulate
a large N-particle system and use a cutoff that is smaller than the simulation box, then
many particles do not contribute significantly to the energy of a particle i. It is advanta-
geous, therefore, to exclude from the expensive energy calculation particle pairs that do
not interact. This technigue increases the efficiency of the simulations. Details of program-
ming for this approach can be found in the books by Allen and Tildesley [6] and Frenkel

and Smit [7].

Figure 2 A particle { interacts mainly with particles that are within the cutoff radius r.. The
“neighbor list”” contains only those particles that are within a sphere of radius ry > rc. Particles
outside this sphere will not conitribute to the force or energy affecting particle i. The use of a neighbor
list that is periodically updated during the simulation reduces the computer time required in calculat-
ing pairwise interactions.
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Other techniques can be found elsewhere in this volume. The following list includes
pointers to several of these techniques:

[. Constant-temperature and constant-pressure simulations—Section VILC, this

chapter. :
Constraint and muitiple time step methods—Section VI, this chapter.

Periodic boundary conditions—Chapter S. ;
Long-range interactions and extended electrostatics—Chapter 5.

Solvation models—Chapter 7.

voa W

VL. ANALYSIS OF DYNAMIC TRAJECTORIES

An important issue, the significance of which is sometime underestimated, is the analysis
of the resulting molecular dynamics trajectories. Clearly, the value of any computer simu-
lation lies in the quality of the information extracted from it. In fact, it is good practice
to plan the analysis procedure before starting the simulation, as the goals of the analysis
will often determine the character of the simulation to be performed.

A. Time Series

The direct output of a dynamic simuiation is a.numerical trajectory, i.e., a series of system
“‘snapshots’” (coordinates and/or velocities) taken at equal time intervals At from the full
trajectory (the sampling interval At is typically much larger than Af). The size of the
trajectory sampling interval, AT, should be determined according to the time scale of the
phenomenon that is being studied. For example, a 1 ps sampling interval may be a good
choice for studying phenomena that take many tens of picoseconds but is clearly inappro-
priate for studying fast processes on the subpicosecond time scale.

Calculating any dynamic variable, A(z), along the trajectory results in a “‘time se-
ries.”” Dynamic variables can be any function of coordinates and/or velocities. They may
be relatively straightforward, such as total energy, specific bond lengths, or torsion angles
of interest, or quite complex. Examples of the latter are the end-to-end distance in a protein
(a quantity useful for studying protein folding), distances between a hydrogen bond donor
and an acceptor, an angle formed between two helices, and so forth. The most straightfor-

ward analytical procedure is to plot the time series as a function of time. Such plots give -

a quick and easy overview of the simulation and are especially useful for picking up trends
(e.g., drifts) or sudden transitions from one state to another.

Because a time series consists of instantaneous values taken at the trajectory sam-
pling points, they tend to be very noisy. The level of noise can be reduced by simple
smoothing procedures. A common smoothing procedure is to slide an *‘N-point window’’
+along the data points and plot the ““window averages’’ {(A(f))y as a function of time [instead
of plotting A(#) itself]. The width of the window, N, and the suitability of the smoothing
approach depend on the property that is being studied and on the ratio between the sam-
pling interval At and the characteristic time of the noise. For example, noise due to bond-
stretching motions (time scale of 10-50 fs) can be smoothed by 0.5-1 ps windows. Alter-
natively, simply increasing the size of the sampling interval AT beyond the characteristic
‘time scale of the “‘noise,” to 0.5-1 ps in this case, will also reduce the effect of the noise.

:
3
3

!
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B. Averages and Fluctuations

Time series plots give a useful overview of the processes studied. However, in order to

compare different simulations to one another or to compare the stmulation to experimental
results it is necessary (o calculate average values and measure fluctuations. The most
common average is the root-mean-square (rms) average, which is given by the second

moment of the distribution,

(A = (AT = [ Z (4 ] . ey

where A is any dynamic variable and N, is the number of *'snapshots’™ in the trajectory.
Root-mean-square fluctuations are calculated in the same way, with the fluctuation A4,
which is described as a difference with respect 1o an average A, replacing the values A

in Eq. (28).
Higher moments of the distribution are often of interest too, especially when noniso-
tropic or anharmonic processes are being studied. The third moment of the distribution

reflects the skewness o; defined as

o5 = (ADHADE B (29)
while the fourth moment reflects the excess kurtosis o, defined as

oy = {AHIKAY =3 . 30)

Both o5 and ¢y are zero for a Gaussian distribution.

C. Correlation Functions

A powerful analytical tool is the time correlation function. For any dynamic variable A(z),
such as bond lengths or dihedral angles, the time autocorrelation function C4(n) is defined

as
Ca(t) = (A(n) AOD - (3D

This function measures the correlation of the property A(z) to itself at two different times
separated by the time interval ¢, averaged over the whole trajectory. The auto-correlation
function is reversible in time [i.e., C,(t) = C.{(—1)], and it is stationary (i.e., (At + 1} A(t))
= (A(t) A(D))). In practical lerms, the autocorrelation function is obtained by averaging the
terms {A(s + #) A(s)) while sliding s along the trajectory.

A time ‘‘cross-correlation’’ function between dynamic variables A(#) and B(f) is
defined in a similar way:

Cas(t) = (A() B(Op ‘ (32

An important property of the time autocorrelation function C,(#) is that by taking
its Fourier transform, F {C,(#)},, one gets a spectral decomposition of all the frequencies
that contribute to the motion. For example, consider the motion of a single particle in a
harmonic potential (harmonic oscillator). The *‘time series”’ describing the position of the -
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Figure 3 (a) A “‘time series’ describing the position as a function of time of a particle moving
in a one-dimensional harmonic well {harmonic oscillator). (b) The autocorrelation function of that

motion; (c} its Fourier transform spectrum.

particle as a function of time is given by the cos{wy) function (Fig. 3a). The autocorrelation
function is given by a cosine function with a period 2r/w, (Fig. 3b), and its Fourier
transform gives a spectrum with a single sharp peak at , (Fig. 3c). The resulting frequency
can be used to extract the (real or effective) local force constant Ky = mwi, where m is
the mass of the system. '

D. Potential of Mean Force

The potential of mean force is a useful analytical tool that results in an effective potential
that reflects the average effect of all the other degrees of freedom on the dynamic variable
of interest. Equation (2) indicates that given a potential function it is possible to calculate
the probability for all states of the system (the Boltzmann relationship). The potential of
mean force procedure works in the reverse direction. Given an observed distribution of
values (from the trajectory), the corresponding effective potential function can be derived.
The first step in this procedure is to organize the observed values of the dynamic variable,
A, into a distribution function p(A). From this distribution the “effective potential’” or
“‘potential of mean force,”’ W(A), is calculated from the Boltzmann relation:

W(A) = —RT In [p(A)) (33)

The advantage of a potential of mean force is that it reflects the effect of environmen-
tal factors on the behavior of the dynamic variable of interest. Such an effect may be

ARV AV A
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the damping of the solvent or a correlated fluctuation, which reduces effective transition
barriers.

E. Estimating Standard Errors ‘ _

Computer simulation is an experimental science to the extent that calculated dynamic
properties are subject to systematic and statistical errors. Sources of systematic error con-
sist of size dependence, poor equilibration, non-bond interaction cutoff, etc. These should,
of course, be estimated and eliminated where possible. It is also essential to obtain an
estimate of the statistical significance of the results. Simulation averages are taken over
runs of finite length, and this is the main cause of statistical tmplemsmn in the mean
values so obtained.

Statistical errors of dynamic properties could be expressed by breaking a simulation
up into multiple blocks, taking the average from each block, and using those values for
statistical analysis. In principle, a block analysis of dynamic properties could be carried
out in much the same way as that applied to a static average. However, the block lengths
would have to be substantial to make a reasonably accurate estimate of the errors. This
approach s based on the assumption that each block is an independent sample.

Another approach is to run multiple MD simulations with different initial conditions.
The recent work by Karplus and coworkers [19] observes that multiple trajectories with
different initial conditions improve conformational sampling of proteins. They suggest
that multiple trajectories should be used rather than a single long trajectory.

V. OTHER MD SIMULATION APPROACHES

A. Stochastic Dynamics

There are cases in which one is interested in the motion of a biomolecule but wishes also
to study the effect of different solvent environments on this motion. In other cases, one
may be interested in studying the motion of one part of the protein (e.g., a side chain or
a loop) as moving in a “*solvent bath™ provided by the remainder of the protein. One way
to deal with these issues is, of course, to explicitly include all the additional components in
the simulation (explicit water molecules, the whole protein, etc.). This solution is computa-
tionally very expensive, because much work is done on parts of the system that are of no
direct interest to the study.

- Another way is to reduce the magnitude of the problem by eliminating the explicit
solvent degrees of freedom from the calculation and representing them in another way.
Methods of this nature, which retain the framework of molecular dynamics but replace
the solvent by a variety of simplified models, are discussed in Chapters 7 and 19 of this
book. An alternative approach is to move away from Newtonian molecular dynamics

toward stochastic dynamics.
The basic equation of motion for stochastic dynamlcs is the Langevin equation,

mit; = =V, U(r) —mPyi(r) + R(D (34)

which has three terms on the right-hand side. The first term accounts for molecular interac-
tions and is the same as that used in Newtonian molecular dynamics [Eqgs. (6) and (7).
The other two terms are unique to stochastic dynamics and represent solvent effects. The
second term is a dissipative drag force reflecting friction due to the solvent. This term is
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proportional to the velocity v, and the friction coefficient B; (which is related to the diffu-
sion conslant 2,). The third term is a random force R,(r) that represents stochastic collisions
between solvent molecules and the solute. The stochastic force introduces energy into the
system, and the friction force removes energy from the system (for further discussion see
Ref. 20). The Langevin random force R,(t) on atom { is obtained from a random Gaussian
distribution of zero mean and a variance related to the friction coefficient,

R} =10 (35a)

(R(DORA0) = 6mksTO() = 2D, 8(r) | (35b)
Sometimes an addittonal term, F™*", is added to the right-hand side of Eq. (34). This
“‘mean force’’ represents an average effect of degrees of freedom not explicitly treated
in the simulation. '

Because of the additional velocity-dependent forces (the dissipative forces), the
straight{orward finite-difference algorithms of the Verlet type cannot be used to integrate
Langevin’s equation. An algorithm may be derived that reduces to the Verlet algorithm
in the limit of vanishing friction (B; — 0). This algorithm is obtained by adding the
Langevin tegms to the Verlet equation described in Egs. (16) and (17). The resulting algo-
rithm s of the order O(Af’) and is valid for §; Ar < 1.

B. Brownian Dynamics

Biomolecular motions that involve substantial displacements of the molecular surface,
such as the motion of heavy particles in aqueous solution, are usually damped owing to
the high viscosity of the surrounding solvent. In many such cases the damping effects are
sufficiently greal that internal forces are negligible and the motion has the character of a
random walk. In other cases, such as the diffusion pairing of a substrate with its enzyme,
the specific details of the internal dynamics are of little interest to the intermolecular
motion. In such cases a further level of simplification can be introduced into the equation
of motion. The relevant approximation applicable to such cases is the Brownian equation
of motion, which is a diffusional analog of the molecular dynamics method. The Brownian
equation can be easily derived from the stochastic Langevin equation presented in Egq.
(34). If the inertial term on the [eft-hand side of the equation is small compared to the
force terms on the right-hand side, it can be neglected, resulting in the diffusional
Brownian equation of motion, -

=VV(r) + FF™ + Ri(o) G6)
m.B;

‘where the properties of the stochastic force R,(¢) and its dependence on the friction coeffi-

cient D, are given by Egs. (35a) and (35b).

As with Newtonian molecular dynamics, a number of different algorithms have been
developed to calculate the diffusional trajectories. An efficient algorithm for solving the
Brownian equation of motion was introduced by Ermak and McCammon [21]. A detailed
survey of this and other algorithms as well as their application can be found in Ref. 2.

vy = 5; =

C. Molecular Dynamics in Alternative Ensembles

The original motecular dynamics (MD) technique was used only to study the natural time
evolution of a classical system of N particles in a volume V. In such simulations, the total
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energy, £, is a constant of motion, so that the time averages obtained by such a conven-
tional MD simulation are equivalent to microcanonical ensemble averages. It is often
scientifically more relevant to perform simulations in other ensembles, such as the canoni-
cal (NVT) that is associated with a Helmholtz free energy or the isotherma[-isobari_c (NPT)
ensemble that is associated with a Gibbs free energy. Two rather different types of solu-
tions to the problem of simulating alternative ensembles with the MD method have been
proposed.

The first approach is based on introducing simple velocity or position rescaling into
the standard Newtonian MD. The second approach has a dynamic origin and is based on
a reformulation of the Lagrangian equations of motion for the system (so-called extended
Lagrangian formulation.) In this section, we discuss several of the most widely used con-
stant-temperature or constant-pressure schemes.

1. Constant-Temperature MD

The simplest method that keeps the temperature of a system constant during an MD simu-
lation is to rescale the velocities at each time step by a factor of (7,/7)"?, where T is the
current instantaneous temperature [defined in Eq. (24)] and T is the desired temperature.
This method is commonly used in the equilibration phase of many MD simulations and
has also been suggested as a means of performing ‘‘constant temperature molecular dy-
namics’’ {22]. A further refinement of the velocity-rescaling approach was proposed by
Berendsen et al. [24], who used velocity rescaling to couple the system o a heat bath at
a temperature 7. Since heat coupling has a characteristic relaxation time, each velocity
v is scaled by a factor A, defined as

2 ’ ' _ : :
a=[1+;‘—’ ?—1)} : (37)
Tr

In this expression, At is the size of the integration time step, Tris a characteristic relaxation
time, and 7 is the instantaneous temperature. In the simulation of water, they found a
relaxation time of t; = 0.4 ps to be appropriate. However, this method does not correspond
exactly to the canonical ensemble.

An alternative method, proposed by Andersen [23], shows that the coupling to the
heat bath is represented by stochastic impulsive forces that act occasionally on randomly
selected particles. Between stochastic collisions, the system evolves at constant energy
according to the normal Newtonian laws of motion. The stochastic collisions ensure that
all accessible constant-energy shells are visited according to their Boltzmann weight and
therefore yield a canonical ensemble. :

To carry out this method, values are chosen for Ty, the desired temperature, and v, the
mean frequency with which each particle experiences a stochastic collision. If successive
collisions are uncorrected, then the distribution of time intervals between two successive
stochastic collisions, P(V, 1), is of the Poisson form,

Plv,n = v exp(— vi) | (38)
A constant-temperature simulation now consists of the following steps:

1. Start with an initial set of positions and momenta and iniegrate the equation of
motion.
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2. The probability that any particular particle suffers a stochastic collision in a
time interval of At is'v Ar.

3. 1If particle i has been selected to undergo a collision, obtain its new velocity
from a Maxwellian velocity distribution, defined in Eq. (23), corresponding to
the desired temperature T, All other particles are unaffected by this collision.

Another popular approach o the isothermal {canonical) MD method was shown by
Nosé [25]. This method for treating the dynamics of a system in contact with a thermal
reservoir is (o include a degree of freedom that represents that reservoir, so that one can
perform deterministic MD at constant temperature by reformulating the Lagrangian equa-
tions of motion for this extended system. We can describe the Nosé approach as an illustra-
tion of an extended Lagrangian method. Energy is allowed to flow dynamically from the
reservoir 1o the system and back; the reservoir has a certain thermal inertia associated
with it. However, it is now more common to use the Nosé scheme in the unplementation
of Hoover [26]. .

To.construct Nosé~Hoover constant-temperature molecular dynamics, an additional
coordinaté, s, and its conjugale momentum p, are introduced. The Hamiltonian of the
extended sj}stem of the N particles plus extended degrees of freedom can be expressed

as

; P} g | |
Hyoe = + Ulg) + +<Ins : : 39
| N ] Z 2m.s? (q) 20 B (39}

where B is 1/k,T, Q is an effective “‘mass”’ associated with s, and g is a parameter related
to the degrees of freedom in the system. The microcanonical distribution in the augmented
set of variables in Eq. (39) is cquivalent to a canonical distribution of the variables r; and
. pds. One of the disadvantages of the original Nosé approach, however, is that s can be
interpreted as a scaling factor of the time step. This implies that the real time-step fluctua-
tions occur during a simulation. ' '

In a simulation it is not convenient to work with fluctuating time intervals. The real-
variable formulation is therefore recommended. Hoover [26] showed that the equations
derived by Nosé can be furiher simplified. He derived a slightly different set of equations
that dispense with the time-scaling parameter s. To simplify the equations, we can intro-
duce the thermodynamic friction coefficient, & = pJ/Q. The equations of motion then
becone ' '

Py | (40a)

p=-Yog, o | (40b)
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Note that Eq. (40d), in fact, is redundant, because the other three equations form a ciased
set. Nonetheless, if we solve the equations of motion for s as weil, we can use the follow-
ing, Hy.. as a diagnostic tool, because this quanlity has to be conserved during the simula-
tion even though My, is no longer 2 Hamiltonian: :

N
H o = Z Lot v +E ; | (41)

where g = 3N in this real-variable formulation.

Theoretically, static quantities are independent of the value chosen for the parameter
Q. In practice, however, we observe that quantities are Q-dependent because of the finite
number of MD simulation steps. Too high a value of O results in slow energy flow between
the system and reservoir, and in the limit ¢ — < we regain conventional MD. On the
other hand, if  is too low, the energy undergoes long-lived, weakly damped oscitlations,
resulting in poor equilibration. Nosé suggested the choice of the adjustable parameter Q
for. the physical system. It may, however, be necessary to choose Q by trial and error in
order to achieve satisfactory damping.

“Both Andersen and Nosé—Hoover methods, indeed, have generated canonical distri-
butions. However, sometimes the Nosé-Hoover thermostat runs into ergodicity problems
and the desired distribution cannot be achieved. The Andersen method does not suffer
from such problems, but its dynamics are less realistic than Nosé-Hoover. To alleviate
the ergodicity problems, Martyna et al. [27] proposed a scheme in which the Nosé—Hoover
thermostat is coupled to another thermostat or, if necessary, to a whole chain of thermo-
stats. The coupling ensures that the thermostats are allowed to fluctuate. In the original
Nosé-Hoover method, the thermostat variable does not fluctuate. This generalization of
the original Nosé~Hoover method is also shown (o generate a canonical distribution, but
this approach no longer faces the ergodicity problems. Details of the programming for
this approach may be obtained from the book by Frenkel and Smit [7].

2. Constant-Pressure MD

In a normal molecular dynamics simulation with repeating boundary conditions (i.e., peri-
odic boundary condition), the volume is held fixed, whereas at constant pressure the vol-
ume of the system must fluctuate. In some simulation cases. such as simulations dealing
with membranes, it is more advantageous to use the constant-pressure MD than the regular

MD. Various schemes for prescribing the pressure of a molecular dynamics simulation

have also been proposed and applied [23,24,28,29]. In al! of these approaches it is inevita-
ble that the system box must change its volume.

To include the volume as a dynarnic variable, the equations of motion are determined
in the analysis of a system in which the positions and momenta of all particles are scaled
by a factor proportional to the cube root of the volume of the system. Andersen [23]
originally proposed a method for constant-pressure MD that involves coupling the system
to an external variable, V, the volume of the simulation box. This coupling mimics the
action of a piston on a real system. The piston has a ‘‘mass’” M, [which has units of
(mass)(length)™*]. From the Lagrangian for this extended system, the equations of motion
for the particles and the volume of the cube are

=P (YY), | (42a)
m; 3\V
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1{V N
pi = F, 3 (v) P | (42b)
V= -M_IT_ [(P(1) — Py) : | (420)

where V is the volume, P(1) is the instantaneous pressure, Py is the desired pressure, and
Fin Piv My, and F; are the position, momenturn, mass, and force, respectively, for each
particle i. Andersen proved that the solution to these equations produces trajectories in
the isobaric-isoenthalpic (NPH) ensemble where the particle number, pressure, and en-
thalpy of the system are constant. Here the choice of piston mass determines the decay
time of the volume fluctuations. It has been proven that equilibrium quantities are indepen-
dent of M,, but in practice M, influences the dynamic properties in the simulations. Even
though there is no precise formulation for choosing M, Andersen suggests that the piston
mass may be chosen by trial and error to satisty the length of time required for a sound
wave to travel through the simulation cell.

Analternative procedure rescales the coordinates of each atom at each time step
[24]. The atomic coordinate x and the characteristic distance for repeating boundary condi-
tions, d, are rescaled to values Hx and pd, respectively, where

113 :
At _
u t[l ——(PO—P)J - . @3)

P ' .
Here, At is the size of the time step, T, is a characteristic relaxation time, and Py is the
pressure of the external constant-pressure bath. The instantaneous pressure can be calcu-
lated as follows:

p=2 [Ek + EZ rk F.J (44)
v 2 =
where V is the volume and Ly is the kinetic energy, ry is the vector from particle { to
particle j, and F 515 the force on particle Jdue to particle i. In simulations of water, values of -
T, = 0.01-0.1 ps were found suitable. This method does not drastically alter the dynamic
trajectories and is casy Lo program, but the appropriate ensemble hag not been identified,
Therefore, the meaning of fluctuations in any observed quantity cannot be determined.

An algorithm for performing a constant-pressure molecular dynamics simulation
that resolves some unphysical observations in the extended system (Andersen’s) method
and Berendsen’s methods was developed by Feller et al. [29]. This approach replaces the
deterministic equations of motion with the piston degree of freedom added to the Langevin
equations of motion. This eliminates the unphysical fluctuation of the volume associated
with the piston mass. In addition, Klein and coworkers [30] present an advanced constant-
pressure method to overcome an unphysical dependence of the chojce of lattice in gener-
ated trajectories. :

In the foregoing treatments of pressure feedback, the simulation volume retains its
cubic form, so changes consist of uniform contractions and expansions. The method is
readily extended to the case of a simulation region in which the lengths and directions of
the edges are allowed to vary independently. Parrinelio and Rahman {31] and Nosé and
Klein {32] extended the Andersen method to the case of noncubic simulation cells and
derived a new Lagrangian for the extended system. Though their equations of motion are
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different from Andersen’s original equations, they produce an identical ensemble. This
technigue is particularly helpful in the study of crystal structures of proteins, because it
allows for phase changes in the simulation, which may involve changes in the unit cell
dimensions and angles. '-

These constant-pressure MD methods can be combined with a suitable temperalure
control mechanism, as discussed in the previous section, 1o produce a more useiul method
to control both pressure and temperature simultaneously during the simulation. Therc are
several approaches. The simplest approach is to use the scaling factors. The details of the
algorithm are given by Berendsen et al. [24]. Another approach [25,26] is to define the
appropriate extended Lagrangian for simultaneously coupling pressure and temperature
to produce the isothermal-isobaric (NPT) ensemble. Hoover {26] presents a detailed de-
scription of the Nosé—Hoover constant-temperature method with Andersen’s constant-
pressure method. Even though this extended system method is stightly more complicated
to program, this is the best candidate for conducting NPT ensemble MD. Details on pro-
gramming for this approach are available in the book by Rapaport [8]. In addition, the
new Langevin piston method [29] for constant pressure can be easily extended to couple
a Nogé~Hoover thermostat to obtain a constant-pressure and constant-temperature method.

VII. ADVANCED SIMULATION TECHNIQUES

Computer simulations have become a valuable tool for the theoretical investigation of
biomolecular systems. Unfortunately, these simulations are often computationally de-
manding tasks owing to the large number of particles as well as the complex nature of their
associated interactions. A longstanding problem, however, is that molecular dynamics 1is
typically limited to a time scale of 107° s (1 ps) or less. In an MD simulation, the most
rapidly varying quantitics, such as the bond lengths, limit the integration time step, while
the more slowly varying molecular processes are of primary interest (see Table 1} and
determine the simulation length required. This would make the simulation of molecular
substances very expensive.

A variety of technigues have been introduced to increase the time step in molecular
dynamics simulations in an attempt to surmount the strict time step limits in MD simula-
tions so that long time scale simulations can be routinely undertaken. One such technique
is to solve the equations of motion in the internal degree of freedom, so that bond stretching

and angle bending can be trcated as rigid. This technique is discussed in Chapter 6 of this

book. Herein, a brief overview is presented of two approaches, constrained dynamics and
multiple time step dynamics. '

A. Constrained Dynamics

To avoid the situation in which high frequency motions, such as bond stretching and bond
angle bending which limits the integration time step, it is customary to eliminate such
degrees of freedom entirely by the simple expedient of replacing them with constraints.
In general, the dynamics could satisfy many constraints simultaneously, €.g., many bond
lengths and bond angles. Assuming that a total of n distance constraints are imposed on
a particular molecule, the constraint o, for a fixed distance d;; between atom i and j can

be expressed as
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szrg-_dﬁ:()m k:l,---vn - (45)

The equations of motion [ollow directly from the Lagrangian formulation containing
all constraints. The result is

mi, = F,+ G, | S o (46)

where F; is the usual force term, m; the mass of the ith atom, and the additional term G,
expresses the effect of the constraints on atom ¢, G, can be written

_ o, oo, |
G, = Zx - = | (47)

Here o denotes the set of constraints that directly involve r; and the {A,} are the Lagrange
multipliers introduced into the problem.

There are various ways to obtain the solutions to this problem. The most straightfor-
ward method is to solve the full problem by first computing the Lagrange multiptiers from
the time-differentiated constraint equations and then using the values obtained to solve
the equations of motion [7,8,37]. This method, however, is not computationally cheap
because it requires a matrix inversion at every iteration. In practice, therefore, the problem
is solved by a simple iterative scheme to satisfy the constraints. This scheme is called
SHAKE [6,14] (see Section V.B). Note that the computational advantage has to be bal-
anced against the additional work required to solve the constraint equations. This approach
allows a modest increase in speed by a factor of 2 or 3 if all bonds are constrained.

Although constrained dynamics is usually discussed in the context of the geometri-
cally constrained system described above, the same techniques can have many other appli-
cations. For instance, constant-pressure and constant-temperature dynamics can be im-
posed by using constraint methods [33,34]. Car and Parrinello [35] describe the use of

‘the extended Lagrangian to maintain constraints in the context of their ab initio MD
method. (For more details on the Car—Parrinello method, refer to the excellent review by

Galli and Pasquarrello [36].)

B. Multiple Time Step Methods

According to the nature of the empirical potential energy function, described in Chapter
2, different motions can take place on different time scales, e.g., bond stretching and bond
angle bending vs. dihedral angle librations and non-bond interactions. Multiple time step
(MTS) methods [38-40,42] allow one to use different integration time steps in the same
simulation so as to treat the time development of the slow and fast movements most
effectively.

Tuckerman et al. [38] showed how to systematically derive time-reversible, area-
preserving MD algorithms from the Liouville formulation of classical mechanics. Here,
we briefly introduce the Liouville approach to the MTS method. The Liouville operator
for a system of N degrees of freedom in Carlesian coordinates is defined as

N
: . d d . d . . @ _
L=[..,H= F—+ K —|=F—+ F(r) = - (48
L=[.. H] Z[ar ”ap,] 5t O3 (48)
where [. .., ...] is the Poisson bracket, H is the Hamiltonian of the system, r; and p;

are the position and conjugate momentum at coordinate i, 7, is the time derivative of r;,
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and F; is the force acting on the ith degree of freedom. The state of the system, I', at time
At is then given by

Clr(an, p(An] = U{Af) - Tr(0), p(0)] . | L (49)

where U(tr) is composed of a classical time evolution operator, ¢, and T could be any
arbitrary tunction that depends on all coordinates and momenta of the system.
We decompose the Liouville operator into two parts,

iL =il + iL, : (50)
Unfortunately, we cannot replace ¢ by e ¥ because iL,; and iL, are noncommuta-

tive operators. Applying Trotter’s theorem [41], however, we can decompose the propaga-
tor, U(AD):

U(AL) = ¢ = gilidd2 gilaty git,a2 , ' (51)

The idea is now to replace the formal solution of the Liouville equation by the discretized
version, The middle term e of the propagator in Eq. (51) can be further decomposed
by an additional Trotter factorization to obtain :

el = (glla®y + O(nAT?) ‘ (52)

where At = n At. Here the smaller time interval At and the integer a determining the
number of steps are chosen to guarantee stable dynamics for the system. Now Eq. (51)

becomes

UAD . pilid? (e:’l.th)n gihidnl : : (53)

With the propagator written in this way, the equation of motion can be integrated
by a multiple time step algorithm in Cartesian coordinates because Az and AT are different
integration time steps (Ar > At when n > 1). As an example, the force terms are separated
into two components

F(r) = F,(r) + F,(r) ' : (54)

where Fassociates with **stiff”” degrees of freedom or fast-varying forces, such as forces
from bond-stretching, angle-bending motions, and F, is associated with the rest of the
contributions (i.e., slowly va.ryi'ng forces), such as forces from torsion motions and non-
bond interaction. By introducing this decomposition into the Liouville operator we obtain

. ) 3 d
L =F—+4 F{r) — + F/(r) — _ 55
iL=r /()ap (r)ap | (35)
In this separation, the two Liouville operators, iL, and iL, of Eq. (50) can now be defined:
iL, =F 9 + F{r) i; iLy = F(r) 9 : (56)
ar dp ' ap

The propagator U{At) deﬁned in Eq. (53) can now be implemented aigonthrrucai]y
as follows:

L. Starting with the initial state [r(0), p(0)], generate the motion by using the propa-
gator e%7?,
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2. Using the final state of step | as the initial state, generate the motion using the
middle propagator ¢%*". Repeat this step n times.
3. Finally, starting with the state generated in step 2 as the initial state, generate

the motion using the propagator e,

. Corresponding implementations of the velocity Verlet operator can be easily derived

for this Liouville propagator [38]. It should also be realized that the decomposition of iL
into a sum of iL, and iL, is arbitrary. Other decompositions are possible and may lead to
algorithms that are more convenient. One example s that in a typical MD simulation, a
large portion of the computer processing time is spent in examining the non-bond pair
interactions. These non-bond forces, therefore, can be divided into fast and slow parts
based on distance by using a continuous switching function [42]. Applications of this
MTS method to protein simulations have been shown to reduce the CPU time by a factor
of 4-5 without altering dynamical properties [39,40,42]. In addition, this MTS approach
shows significantly better performance enhancement in systems where the separation of

fast and slow motions s pronounced [43].

C. Other Approaches and Future Direction

There are other approaches to obtaining efficiency in MD simulations. Examples include
eigenvector-based schemes [44,45], implicit integration schemes [46], path optimization
schemes [47], and a transition stale theory approach [48]. Recently, a unique approach to
overcome the time scale problems in MD was developed. Multibody order (V) dynamics
[MBO(N)D] [49] is based on aggregating atoms of a macromolecule into groupings of
interacting flexible and rigid bodies. Body flexibility is modeled by a truncated set of body-
based normal modes. This approach allows for the unimportant high frequency modes of
vibration, such as bond and angle motions, to be eliminated, leaving only the important
lower frequency motions. This results in the use of a larger integration time step size,
substantially reducing the computational time required for a given dynamic simulation.
By coupling MBO(N)D with MTS described in the previous section, speed increases of
up to 30-fold over conventional simulation methods have been realized in various MD
simulations [49]. In addition to increasing computational efficiency, the approach also
allows for a simplified analysis of dynamics simulations, as there are fewer degrees of
freedom to consider. '
Additionally, continuous developments of computer architectures, such as the clock
speed of CPU chips and massive parallel computers, also help to carry out simulations
of large biomolecules that require enormous computing power. In recent years, distributed
memory parallel computers have been offering cost-effective computational power to re-
searchers. This approach shows a great advantage in the size of the system (it is possible
to run a million atoms in the system), although the simulation length is not scaled as well
as the size because of the nature of solving equations of motion sequentially in time. -
Finally, molecular modeling based on low resolution (coarse-grain) models has
gained some attention in the field of biomolecular simulations [50]. This approach dramati-
cally reduces the number of interaction sites by adapting a simple approach (e.g., a single
site per residue) [51,52] or a multiple sites per residue approach (e.g., one backbone and
one side chain interaction site per residue) [53,54]. These coarse-grain potentials are de-
scribed by two categories: those based on statistical contact information derived from high
resolution protein structures [51,52,54], and those base on established molecular mechan-
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ics force fields [53]. Coarse grain approaches are another way to gain a significant increase
in speed and therefore begin to address large systems, such as protein--protein complexes,

routinely.
Despite recent developments in algorithms and computer hardware to bridge the gap

between the time and size scales accessible by computer simulations and those required by
- experimental observations we still need to develop noble approaches.
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