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Basics of molecular mechanics and dynamics
Statistical mechanics of liquids

Basic ideas of continuum solvation
The MM/PBSA model



1901 (and earlier?) ball and stick models



1950s: wire models of proteins



- separate nuclei and electrons

- polarisation, electron transfer and correlation

- can specify electronic state

-  can calculate formation energies 

- can do chemistry (bond breaking and making)

- variationally bound

- computationally expensive

-  typically ~10-100 atoms

-  dynamics ~1 ps

QM MOLECULE

Nuclei

Electrons



- no explicit electrons, net atomic charges

- no polarisation, electron transfer or correlation

- conformational energies for ground state

- no chemistry

- semi-empirical force fields

- not variationally bound

- solvent and counterion representations

- typically ~1000-100000 atoms

- dynamics up to ~100 ns

Atoms

Bonds

MM MOLECULE



Some force field assumptions

1 Born-Oppenheimer approximation (separate nuclear and
electronic motion)

2 Additivity (separable energy terms)
3 Transferability (look at different conformations, different

molecules)
4 Empirical (choose functional forms and parameters based on

experiment)



What does a force field look like?
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Lennard-Jones energy curve
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Distance dependence
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AMBER parm94 H atom types

H H bonded to nitrogen atoms

HC H aliph. bond. to C without electrwd.group

H1 H aliph. bond. to C with 1 electrwd. group

H2 H aliph. bond. to C with 2 electrwd.groups

H3 H aliph. bond. to C with 3 eletrwd.groups

HA H arom. bond. to C without elctrwd. groups

H4 H arom. bond. to C with 1 electrwd. group

H5 H arom. bond. to C with 2 electrwd. groups

HO hydroxyl group

HS hydrogen bonded to sulphur

HW H in TIP3P water

HP H bonded to C next to positively charged gr 



C sp2 C carbonyl group 

CA sp2 C pure aromatic (benzene)

CB sp2 aromatic C, 5&6 membered ring junction

CC sp2 aromatic C, 5 memb. ring HIS

CK sp2 C 5 memb.ring in purines

CM sp2 C  pyrimidines in pos. 5 & 6

CN sp2 C aromatic 5&6 memb.ring junct.(TRP)

CQ sp2 C in 5 mem.ring of purines between 2 N

CR sp2 arom as CQ but in HIS

CT sp3 aliphatic C

CV sp2 arom. 5 memb.ring w/1 N and 1 H (HIS)

CW sp2 arom. 5 memb.ring w/1 N-H and 1 H (HIS)

C* sp2 arom. 5 memb.ring w/1 subst. (TRP)

AMBER parm94 C atom types



Force fields in Amber

ff94: widely used (“Cornell et al.), pretty good nucleic acid, too
much α-helix for proteins

ff99: major recalibration by Junmei Wang and others; basis for
most current Amber ff’s

ff99SB: recalibration of backbone potentials for proteins by Carlos
Simmerling (“SB”)

ff02r1: polarizable extension for ff99

ff03: new charge model (Yong Duan) + backbone torsions for
proteins

ff03ua: united atom extension

ff99bsc0: new torisons for nucleic acids

ff09: “coming”



Periodic boundary conditions



Basics of the Ewald approach



Minimization and simulated annealing



The Simplex algorithm



Molecular dynamics algorithms

x(t + h) = x(t) + v(t)h +
1
2

a(t)h2 +
1
6

d3x
dt3 h3 + O(h4)

x(t−h) = x(t) +−v(t)h +
1
2

a(t)h2− 1
6

d3x
dt3 h3 + O(h4)

x(t + h) = 2x(t)− x(t−h) + a(t)h2 + O(h4) (2)

x(t + h)− x(t) = x(t)− x(t−h) + a(t)h2 + O(h4)

v(t +
1
2

h) = v(t− 1
2

h) + a(t)h + O(h3) (3)

x(t + h) = x(t) + v(t +
1
2

h)h + O(h4) (4)

Eq. (2) is the original Verlet propagation algorithm; Eqs. 3 and 4 are
the “leap-frog” version of that. Remember that
a = d2x/dt2 = F/m = (∂V/∂x)/m. See pp. 42-47 in Becker &
Watanabe.



Regulating temperature

“Temperature” is a measure of the mean kinetic energy. The
instantaneous KE is

T (t) =
1

kBNdof

Ndof

∑
i

miv
2
i

(cf. classical rule of thumb: “kBT/2 of energy for every squared
degree of freedom in the Hamiltonian”)
Suppose the temperature is not what you want. At each step, you
could scale the velocities by:

λ =

[
1 +

h
2τ

(
T0

T (t)
−1

)]1/2

This is the “Berendsen” or “weak-coupling” formula, that has a minimal
disruption on Newton’s equations of motion. But it does not guarantee
a canonical distribution of positions and velocities. See Morishita, J.
Chem. Phys. 113:2976, 2000; and Mudi and Chakravarty, Mol. Phys.
102:681, 2004.



Langevin dynamics

Consider the stochastic, Langevin equation:

dv/dt =−ζ v + A(t)

By Stokes’ law, the friction coefficient is related to the vicsocity of the
environment: ζ = 6πaη/m. At long times, we want this system to go
to equilibrium at a temperature T , which is a Maxwell-Boltzmann
distribution:

W (v, t;v0)∼ exp
[
−mv2/2kBT

]
for every value of v0. This places restraints on the properties of the
stochastic force A(t). It can be shown that

ζ = (β/m) < A2 >

where we have assumed that < A >= 0 and
< A(0).A(t) >=< A2 > δ (t).



Computational Equilibrium Statistical Mechanics

(good reading: J.C. Slater, “Introduction to Chemical Physics”; Dover,
pp. 3-51)

First law of thermodynamics:

dU = dQ−dW or ∆U =
∫

dU =
∫

dQ−
∫

dW (5)

Second law of thermodynamics:

dS ≥ dQ/T or TdS ≥ dU + dW (6)



Connections to microscopic properties

Let pi be the probability (fraction) of micro-state i . Then we can
postulate a connection to the entropy:

S =−k ∑
i

pi lnpi (7)

This is large when the system is “random”. For example, if pi = 1/W
(same for all i), then S = k lnW . This entropy is also additive (or
“extensive”). Consider two uncorrelated systems that have a total
number of states W1 and W2. The total number of possibilities for the
combined system is W1W2. Then:

S = k ln(W1W2) = k lnW1 + k lnW2 = S1 + S2 (8)



The canonical ensemble: temperature

Now consider dividing an isolated system (whose total energy U is therefore fixed)
into a number of subsystems, each of which could have its own internal energy Ei , but
where there is thermal contact between the subsystems, so that energy can be
transferred among them. The fixed total energy is

U = ∑
i

Ei pi

where pi is the probability that subsystem i will have energy Ei . Let us find the most
probable configuration by maximizing the entropy, subject to the constraint of constant
total energy and that ∑pi = 1:

dS = 0 =−k ∑dpi (lnpi ) + kβ ∑Ei dpi − ka∑dpi (9)

Here a and β are undetermined multipliers. The only general solution is when the
coefficients of the dpi terms add to zero:

lnpi = a−βEi

pi =
exp(−βEi )

∑exp(−βEi )
(10)



Connections to clasical thermodynamics

The Lagrange multiplier a is just the denominator of Eq. 10. To figure
out what β is, we connect this back to thermodynamics:

dS = kβ ∑
i

dpiEi = kβdQ ⇒ β = 1/kT

The denominator of Eq. 10 is called the partition function, and all
thermodynamic quantities can be determined from it and its
derivatives:

Z ≡∑exp(−βEi)

A = U−TS =−kT lnZ

S = −(∂A/∂T )V = k lnZ + kT (∂ lnZ/∂T )V

U = −(∂ lnZ/∂β ); CV = T

(
∂ 2(kT lnZ )

∂T 2

)



Connections to classical mechanics

We have implicitly been considered a discrete set of (quantum) states,
Ei , and the dimensionless partition function that sums over all states:

ZQ = ∑
i

e−βEi

How does this relate to what must be the classical quantity, integrating
over all phase space:

ZC =
∫

e−βH(p,q)dpdq

Zc has units of (energy · time)3N for N atoms. The Heisenberg
principle states (roughly): ∆p∆q ' h, and it turns out that we should
“count” classical phase space in units of h:

ZQ ' Zc/h3N

For M indistinguishable particles, we also need to divide by M!. This
leads to a discussion of Fermi, Bose and Boltzmann statistics....



Separation of coordinates and momenta

In classical mechanics, with ordinary potentials, the momentum
integrals always factor out:

Z = h−3N
∫

e−βp2/2mdp
∫

e−βV(q)dq

The momentum integral can be done analytically, but will always
cancel in a thermodynamic cycle; the coordinate integral is often called
the configuration integral, Q. The momentum terms just give ideal gas
behavior, and the excess free energy (beyond the ideal gas) is just

A =−kT lnQ

The momentum integrals can be done analytically:

Z = Q
N

∏
i=1

Λ−3
i ; Λi = h/(2πmikBT )



Getting conformational free energies

A

B

δ

A

B

δ

U U U UU
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∆A =−kBT ln
ρ(B)

ρ(A)
W =−kBT lnρ(δ ) (11)



Free energy profiles

ρ(δ ) =

∫
exp(−βU)dΣ∫

exp(−βU)dδdΣ
(12)

Here β = 1/kBT and dΣ represents an integration over all remaining degrees of
freedom except δ . Now add a biasing potential U∗(δ ) which depends only upon δ :

ρ
∗(δ ) = exp[−βU∗(δ )]

∫
exp(−βU)dΣ∫

exp(−β [U + U∗])dδdΣ

= ρ(δ )exp[−βU∗(δ )]/〈exp(−βU∗)〉 (13)

〈exp(−βU∗)〉=

∫
exp(−βU∗)exp(−βU)dδdΣ∫

exp(−βU)dδdΣ
(14)

Taking logarithms, the potential of mean force in the presence of the umbrella
potential, W ∗, is related to that in an unbiased simulation by:

W ∗(δ ) = W (δ ) + U∗(δ )−C′ (15)

where C′ =−kBT ln〈exp(−βU∗)〉 is a constant independent of δ .



Thermodynamic integration: computational alchemy

Now suppose that V (and hence Q and A) are parameterized by λ :
V → V (λ ). Then, since A =−kTlnQ:

∂A(λ )

∂λ
=−kT

∫
∂

∂λ
e−βV(λ)dq/Q =

1
Q

∫ (
∂V
∂λ

)
e−βV(λ)dq =

〈
∂V
∂λ

〉
λ

The total change in A on going from λ = 0 to λ = 1 is:

∆A = A(1)−A(0) =
∫ 1

0

〈
∂V
∂λ

〉
λ

dλ (16)

This is called thermodynamic integration, and is a fundamental
connection between macroscopic free enegies, and microscopic
simulations. The integral over λ can be done by quadrature, and the
Boltzmann averages 〈∂V/∂λ 〉

λ
can be carried out by molecular

dynamics or Monte Carlo procedures.



Thermodynamic integration: linear mixing

Consider the special case of linear mixing, where

V (λ ) = (1−λ )V0 + λV1

Then ∂V/∂λ = V1−V0 ≡∆V (often called the energy gap), and

∆A =
∫ 1

0
〈∆V 〉

λ
dλ (17)

The simplest numerical approximation to the λ integral is just to evaluate the integrand at the
midpoint, so that ∆A = 〈∆V 〉1/2. This says that the free energy difference is approximately
equal to the average potential energy difference, evaluated for a (hypothetical) state half-way
between λ = 0 and λ = 1.
It is often convenient for other purposes to perform simulations only at the endpoints. In this
case, a convenient formula would be:

∆A' 1
2
〈∆V 〉0 +

1
2
〈∆V 〉1

And more elaborate formulas (e.g. from Gaussian integration) are feasible (and often used). See
Hummer & Szabo, J. Chem. Phys. 105, 2004 (1996) for a fuller discussion.



Free energy perturbation theory

Here is an (initially) completely different approach:

∆A = −kT ln

(
Q1

Q0

)
= −kT ln

(∫
exp(−βE1)exp(βE0)exp(−βE0)dq∫

exp(−βE0)dq

)
= −kT ln

(
1

Q0

∫
exp(−β [E1−E0])exp(−βE0)

)
= −kT ln〈exp(−[E1−E0]/kT 〉0
= −kT ln〈exp(−[E0−E1]/kT 〉1

This is generally called “perturbation theory”, and involves averaging
the exponential of the energy gap, rather than the energy gap itself.



A simple model: “Marcus theory”

qq q
A

A

B

B

e
n
e
rg
y

(2)
1/2

/kλ

λ
2

/k + E∆

E∆

VA(q) =
1
2

k(q−qA)2

VB(q) =
1
2

k(q−qB)2

∆V (q) =
√

2λ (q−qA) +
λ 2

k
+ ∆E



Marcus theory thermodynamic integration

〈VB−VA〉A = Q−1
A

∫ [√
2λ (q−qA) +

λ 2

k
+ ∆E

]
e−βVA(q)dq =

λ 2

k
+ ∆E

〈VB−VA〉B =−λ 2

k
+ ∆E; ∆A' 1

2
[〈∆V 〉A + 〈∆V 〉B] = ∆E

What is the distribution of ∆V in the VA state?

ρ(∆V) = ρ(q)

∣∣∣∣ dq
d∆V

∣∣∣∣ where q(∆V) =

(
λ 2 + k∆E√

2kλ

)
− ∆V√

2λ

ρ(∆V)∼ 1√
2λ

exp{−βVA [q(∆V)]}' exp

{
− (∆V −λ 2/k−∆E)2

2σ2

}
with σ

2 =
2λ 2

kβ

Hence, the mean of the distribution gives λ 2/k + ∆E , and the width of the distribution
gives λ 2/k (the “relaxation”); knowing both allows you to get ∆E and λ separately.
For perturbation theory:

∆A =−kT ln
〈

e−β∆V
〉

A
= ∆E



Application: pKa behavior in proteins
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Energy gap distributions
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λ=0.11

λ=0.5

λ=0.89

Lambda    DG/DL

0.11270    −3.1

0.50000    −64.5
0.88729    −131.4

(kcal/mol)

Simonson, Carlson, Case, JACS 126:4167 (2004)



Not everything is linear!

Shirts, Pitera, Swope, Pande, J. Chem. Phys. 119, 5740 (2003).



Thermodynamics cycles in ligand binding



Example of explicit solvation setup



Basic ideas of continuum solvent models

Tomasi & Persico, Chem Rev. 94, 2027 (1994)

Simonson, Rep. Prog. Phys. 66, 737 (2003)

Bashford & Case, Annu. Rev. Phys. Chem. 51, 129 (2000)

Gallicchio & Levy, J. Comput. Chem. 25, 479 (2004)

ρ

q

water

vacuum
(1929)

ε= − 1/2(1−1/∆
2

Born Approximation:

)q/

ion

ρ

W

charge

ion radius





Defining the continuum solvent model

Simplest model has “high” εext outside (white) and “low” εin where
solvent is excluded:



Generalized Born model

The solvation energy can be computed by quadrature if one adopts the
Coulomb field approximation:

W =
1

8π

∫
E ·DdV =

1
8π

[∫
in

q2

εinr4 dV +
∫

ext

q2

εext r4 dV

]
∆G = W (εext = 80)−W (εext = 1)

∆GGB =−1
2

(
1− 1

εext

)
q2

Reff
; or − 1

2

(
1− 1

εext

)
qiqj

f GB(R i
eff ,R

j
eff , rij)

R−1
eff =

1
4π

∫
ext

r−4dV

Bashford & Case, Annu. Rev. Phys. Chem. 51, 129 (2000)



Effects of added salt

(
1− 1

ε

)
→

(
1− e−κ f GB(dij )

ε

)
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(1999)



B-A energy differences for r,d(CCAACGTTGG)2

A RNAB DNA
DNA RNA

Couomb -293.0 -266.9
PB 286.6 240.2
GB 288.1 242.2
vdW -7.7 18.7
bad -7.0 17.6
−T ∆S 2.9 0.5

total -21.0 9.8
0.1M salt 5.2 3.4
1.0M salt 6.0 3.9

Srinivasan, Cheatham, Kollman, Case, JACS 120, 9401 (1998)


