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Basics of molecular mechanics and dynamics
Statistical mechanics of liquids
Basic ideas of continuum solvation
The MM/PBSA model



1901 (and earlier?) ball and stick models

Baird & Tatlock 1901



1950s: wire models of proteins




- separate nuclei and electrons
- polarisation, electron transfer and correlation
- can specify electronic state

- can calculate formation energies

- can do chemistry (bond breaking and making)
- variationally bound

- computationally expensive
- typically ~10-100 atoms

- dynamics ~1 ps

QM MOLECULE



- no explicit electrons, net atomic charges

- no polarisation, electron transfer or correlation
- conformational energies for ground state

- no chemistry

- semi-empirical force fields C(I
- not variationally bound ~
- solvent and counterion representations

- typically ~1000-100000 atoms
- dynamics up to ~100 ns

MM MOLECULE



Some force field assumptions

@ Born-Oppenheimer approximation (separate nuclear and
electronic motion)

@ Additivity (separable energy terms)

@ Transferability (look at different conformations, different
molecules)

© Empirical (choose functional forms and parameters based on
experiment)



What does a force field look like?

U = Y Ko(b—beg)’+ Y, Ko(6—6e)°+ Y Kyw?
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HC
H1
H2
H3
HA
H4
H5
HO
HS
HW
HP

H bonded to nitrogen atoms

H aliph. bond. to C without electrwd.group
H aliph. bond. to C with 1 electrwd. group
H aliph. bond. to C with 2 electrwd.groups
H aliph. bond. to C with 3 eletrwd.groups
H arom. bond. to C without elctrwd. groups
H arom. bond. to C with 1 electrwd. group
H arom. bond. to C with 2 electrwd. groups
hydroxyl group

hydrogen bonded to sulphur

Hin TIP3P water

H bonded to C next to positively charged gr

AMBER parm94 H atom types



CA

CB

CcC

CK

CM
CN

cQ
CR

CT

Ccv

CW
c*

sp2 C carbonyl group

sp2 C pure aromatic (benzene)

sp2 aromatic C, 5&6 membered ring junction
sp2 aromatic C, 5 memb. ring HIS

sp2 C 5 memb.ring in purines

sp2 C pyrimidines in pos. 5 & 6

sp2 C aromatic 5&6 memb.ring junct.(TRP)
sp2 C in 5 mem.ring of purines between 2 N
sp2 arom as CQ but in HIS

sp3 aliphatic C

sp2 arom. 5 memb.ring w/1 N and 1 H (HIS)
sp2 arom. 5 memb.ring w/1 N-H and 1 H (HIS)
sp2 arom. 5 memb.ring w/1 subst. (TRP)

AMBER parm94 C atom types



Force fields in Amber

o ff94: widely used (“Cornell et al.), pretty good nucleic acid, too
much a-helix for proteins

@ ff99: major recalibration by Junmei Wang and others; basis for
most current Amber ff’s

o ff99SB: recalibration of backbone potentials for proteins by Carlos
Simmerling (“SB”)

@ ff02r1: polarizable extension for ff99

@ ff03: new charge model (Yong Duan) + backbone torsions for
proteins

@ ff03ua: united atom extension
@ ff99bsc0: new torisons for nucleic acids
e ff09: “coming”
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Basics of the Ewald approach
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Minimization and simulated annealing

(a)




The Simplex algorithm




Molecular dynamics algorithms

x(t+h) = x(t)+v(t)h+;a(t)h2+;f’;‘h3+0(h4)

x(t—h) = x(t)—i——v(t)h—i-;a(t)hz—;CZ;;(h3+O(h4)

x(t+h) = 2x(t)—x(t—h)+a(t)h* + O(h*) )
x(t+h) —x(t) = x(t)—x(t—h)+a(t)h* + O(h*)

v(t+3h) = v(t—%h)+a(t)h+o(h3) (3)

x(t+h) = x(t)+v(t+%h)h+o(h“) (4)

Eq. (2) is the original Verlet propagation algorithm; Egs. 3 and 4 are
the “leap-frog” version of that. Remember that

a=d?x/dt® = F/m= (dV/dx)/m. See pp. 42-47 in Becker &
Watanabe.



Regulating temperature

“Temperature” is a measure of the mean kinetic energy. The
instantaneous KE is

(cf. classical rule of thumb: “kg T /2 of energy for every squared
degree of freedom in the Hamiltonian”)

Suppose the temperature is not what you want. At each step, you
could scale the velocities by:

[ ()

This is the “Berendsen” or “weak-coupling” formula, that has a minimal
disruption on Newton’s equations of motion. But it does not guarantee
a canonical distribution of positions and velocities. See Morishita, J.
Chem. Phys. 113:2976, 2000; and Mudi and Chakravarty, Mol. Phys.
102:681, 2004.



Langevin dynamics

Consider the stochastic, Langevin equation:

av/dt=—-8{v+A(t)

By Stokes’ law, the friction coefficient is related to the vicsocity of the
environment: { = 6man/m. At long times, we want this system to go
to equilibrium at a temperature T, which is a Maxwell-Boltzmann
distribution:

W(v, t;vo) ~ exp [—mv® /2kgT]

for every value of vg. This places restraints on the properties of the
stochastic force A(t). It can be shown that

{=(B/m) < A>

where we have assumed that < A>=0 and
< A(0).A(t) >=< A% > §(1).



Computational Equilibrium Statistical Mechanics

(good reading: J.C. Slater, “Introduction to Chemical Physics”; Dover,
pp. 3-51)

@ First law of thermodynamics:

dU:dQ—dWorAU:/dU:/dQ—/dW (5)

@ Second law of thermodynamics:

dS > dQ/T or TdS> dU+dW (6)



Connections to microscopic properties

Let pi be the probability (fraction) of micro-state i. Then we can
postulate a connection to the entropy:

S=—k) pilnp; (7)
i

This is large when the system is “random”. For example, if p; =1/W
(same for all i), then S = kIn W. This entropy is also additive (or
“extensive”). Consider two uncorrelated systems that have a total
number of states W; and W,. The total number of possibilities for the
combined system is Wj Wh. Then:

S=kin(WiWo) =kInW;s +kInWo = S1 + S, (8)



The canonical ensemble: temperature

Now consider dividing an isolated system (whose total energy U is therefore fixed)
into a number of subsystems, each of which could have its own internal energy E;, but
where there is thermal contact between the subsystems, so that energy can be
transferred among them. The fixed total energy is

U= ZEiPi
7

where p; is the probability that subsystem 7 will have energy E;. Let us find the most
probable configuration by maximizing the entropy, subject to the constraint of constant
total energy and that Y p; = 1:

dS=0=—kY doj(inp;))+kB Y. Eidp;i— ka)_ dpi 9
Here a and 8 are undetermined multipliers. The only general solution is when the
coefficients of the dp; terms add to zero:

Inp; = a— BE;

pi— exp(—BE;)
' Yexp(—BE)




Connections to clasical thermodynamics

The Lagrange multiplier a is just the denominator of Eq. 10. To figure
out what f3 is, we connect this back to thermodynamics:

dS=kB Y dpEi=kBdQ = B =1/kT
i
The denominator of Eq. 10 is called the partition function, and all

thermodynamic quantities can be determined from it and its
derivatives:

Z =Y exp(—BE)

A = U—-TS=—kTInZ
S = —(JA/AT)y=kInZ+kT(dInZ/IT)y

U = —(0nz/aB); CV_T(aZ(STTan))



Connections to classical mechanics

We have implicitly been considered a discrete set of (quantum) states,
E;, and the dimensionless partition function that sums over all states:

ZQ = Ze_ﬁE"
i

How does this relate to what must be the classical quantity, integrating
over all phase space:

ZC — /efﬁH(pvq)dpdq

Z, has units of (energy - time)3N for N atoms. The Heisenberg
principle states (roughly): ApAq ~ h, and it turns out that we should
“count” classical phase space in units of h:

Zo~ Z;/ N

For M indistinguishable particles, we also need to divide by M!. This
leads to a discussion of Fermi, Bose and Boltzmann statistics....



Separation of coordinates and momenta

In classical mechanics, with ordinary potentials, the momentum
integrals always factor out:

Z = poN / e~ BP/2m g, / e PV(@dq

The momentum integral can be done analytically, but will always
cancel in a thermodynamic cycle; the coordinate integral is often called
the configuration integral, Q. The momentum terms just give ideal gas
behavior, and the excess free energy (beyond the ideal gas) is just

A=—kTIhQ
The momentum integrals can be done analytically:
N

Z=Q[[N % N =h/@amksT)

i=1



Getting conformational free energies

A4
v

AA:—kBTInp— W=—kgTinp(8)  (11)



Free energy profiles

(5) = Jexp(—BU)dX

PAO) = T exp (—BU) dédx

Here B =1/kgT and dX represents an integration over all remaining degrees of
freedom except 8. Now add a biasing potential U*(6) which depends only upon §:

(12)

. Jexp(—BU)dx
exp[—BU*(9)] [exp(—B[U+ U*])dddx

= p(8)exp[-BU(8)]/ (exp(-BU")) (13)

p*(3)

o _ Jexp(—BU")exp(—BU)dSdx
(exp(—BUY)) = Texp(—BU)dods (14)

Taking logarithms, the potential of mean force in the presence of the umbrella
potential, W*, is related to that in an unbiased simulation by:

W*(8) = W(8) + U"(8) - C' (15)

where C' = —kgT In (exp(—B U*)) is a constant independent of &.



Thermodynamic integration: computational alchemy

Now suppose that V (and hence Q and A) are parameterized by A :
V — V(4). Then, since A= —kTInQ:

JA(A) _ 9 BV yg/ae L [(OV BVt gg— {2V
on = [ gre P Pasja=5 [ (57 ) P Paa=(3;

The total change in A on going from A =0to A =1 is:

AA:A(1)—A(0):/01<3X>Ad7L (16)

This is called thermodynamic integration, and is a fundamental
connection between macroscopic free enegies, and microscopic
simulations. The integral over A can be done by quadrature, and the
Boltzmann averages (dV//dA), can be carried out by molecular
dynamics or Monte Carlo procedures.




Thermodynamic integration: linear mixing

Consider the special case of linear mixing, where

VIA)=(1—-A)Vo+AV,
Then dV/dA = V; — Vp = AV (often called the energy gap), and

AA:/1 (AV), dA (17)
0

The simplest numerical approximation to the A integral is just to evaluate the integrand at the
midpoint, so that AA = (A V)1/2. This says that the free energy difference is approximately
equal to the average potential energy difference, evaluated for a (hypothetical) state half-way
between A =0and A =1.

It is often convenient for other purposes to perform simulations only at the endpoints. In this
case, a convenient formula would be:

1 1
AA~ —(AV),+ = (AV),
2 2
And more elaborate formulas (e.g. from Gaussian integration) are feasible (and often used). See
Hummer & Szabo, J. Chem. Phys. 105, 2004 (1996) for a fuller discussion.



Free energy perturbation theory

Here is an (initially) completely different approach:

—KTIn (81)

0
_ J exp(—BEy)exp(BEo)exp(—BEoy)dq
a len( Jexp(—BEo)dq )

= —kTln (Clo/exp(—ﬁ[ﬂ —Eo])exp(—BEo))
exp(—[Er — Eo] /KT),

exp(—[Eo — E1]/kT>1

AA

—kTIn{
—kTIn{
This is generally called “perturbation theory”, and involves averaging
the exponential of the energy gap, rather than the energy gap itself.



A simple model: “Marcus theory”

A

energy

1
= —k(g—qy)?
> (9—qa)

B PSR

= 2k(q gs)

2

= VeA(g-aa)+ - +AE




Marcus theory thermodynamic integration

2 2
(VB—Va)a=Qy' / {\/éx(qf qa) + % +AE] e BVadgq = % +AE

A2 1
(VB—Va)g = _7+AE; AAx~ §[<AV>A+<AV>B] =AE

What is the distribution of AV in the Vj state?

p(AV) =

2+kAE\ AV
where q(AV)= ()L Tk )

‘dAV V2kA ) V2A

P(AV)~ \/151 exp{—ﬁvA[q(Av)]}:exp{—(AV”IZ/k’AE)Z} with 6% = 22

202 " kB
Hence, the mean of the distribution gives A2 /k + AE, and the width of the distribution

gives /lz/k (the “relaxation”); knowing both allows you to get AE and A separately.
For perturbation theory:

AA= —KTln <efﬁAV>A —AE



Application: pKa behavior in proteins
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Energy gap distributions
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Not everything is linear!

dH / di
80 =
40 a_if i‘

.
4

Il
i,
i

g & B

o 0.2 0.4 . 0.5
A

Shirts, Pitera, Swope, Pande, J. Chem. Phys. 119, 5740 (2003).



Thermodynamics cycles in ligand binding




Example of explicit solvation setup




Basic ideas of continuum solvent models

@ Tomasi & Persico, Chem Rev. 94, 2027 (1994)

@ Simonson, Rep. Prog. Phys. 66, 737 (2003)

@ Bashford & Case, Annu. Rev. Phys. Chem. 51, 129 (2000)
@ Gallicchio & Levy, J. Comput. Chem. 25, 479 (2004)

charge

ion radius

Born Approximation:
(1929)

vacuum  |aws= - 1/2(1-1¢ )dp
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Defining the continuum solvent model

Simplest model has “high” &g outside (white) and “low” &, where
solvent is excluded:




Generalized Born model

The solvation energy can be computed by quadrature if one adopts the
Coulomb field approximation:

1 1 G G
W:—/E‘DdV:— 4dV+ adVv
81w 87 | Jin Einr ext Eextl

AG= W(Sext = 80) — W(Sext = 1)

1 1 “ 1 1 Qi
aca——3(1- L) Es o 1 (- L) e
2 €ext ) Rert 2 €ext ) fGB( R Fl’jeﬁ, ry)

Bashford & Case, Annu. Rev. Phys. Chem. 51, 129 (2000)



Effects of added salt
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B-A energy differences for r,d(CCAACGTTGG).

| | DNA | RNA |
Couomb | -293.0 | -266.9
PB | 286.6 | 240.2
GB | 288.1 [ 2422

vdW -7.7 18.7
bad -7.0 17.6
—TAS 2.9 0.5
total -21.0 9.8

0.1M salt 5.2 3.4
1.0M salt 6.0 3.9

Srinivasan, Cheatham, Kollman, Case, JACS 120, 9401 (1998)



