| pbeq.inp | This
input is under the "epot"
directory. Once we read a protein structure, a generic stream file "pbeq.str"
is called to calculate the electrostatic potential and solvation energy
of the protein. One can choose different options in the stream file:
 
 
 set
EpsP    =  
1.0      ! dielectric
constant for the protein interiorset
EpsW    = 
80.0    ! solvent dielectric
constant
 set
Conc    =  
0.0      ! salt
concentration (M)
 set
Focus   = 
true     ! to have a refined
calculation focussed
 ! on the site
using a finer grid
 set
Dcel_c  =  
1.2     ! the grid spacing
in the finite-difference
 ! (centered on
Xcen,Ycen,Zcen)
 set
Dcel_f  =  
0.4      ! the grid
spacing in the finite-difference
 ! (centered on
Xcen,Ycen,Zcen)
 set
LEdge   = 
10.0    ! distance between a
protein atom and a grid
 ! LEdge*2 for
coarse-gird calculations and
 ! LEdge/2 for
fine-grid calculations (see below)
 set
Options =  watr 1.4 reentrant ! Let's use the molecular surface
 
 Then, the center of the protein and number of grid points along XYZ are
determined as
 
 
 coor
statcoor orient norotate
 coor stat
 set Xcen = ?xave
 set Ycen = ?yave
 set Zcen = ?zave
 
 calc Nclx_c = int ( ( @LEdge * 4.0 + ?Xmax - ?Xmin ) / @{Dcel_c} )
 calc Ncly_c = int ( ( @LEdge * 4.0 + ?Ymax - ?Ymin ) / @{Dcel_c} )
 calc Nclz_c = int ( ( @LEdge * 4.0 + ?Zmax - ?Zmin ) / @{Dcel_c} )
 
 if Focus eq true then
 calc Nclx_f = int ( ( @LEdge * 1.0 + ?Xmax - ?Xmin
) / @{Dcel_f} )
 calc Ncly_f = int ( ( @LEdge * 1.0 + ?Ymax - ?Ymin
) / @{Dcel_f} )
 calc Nclz_f = int ( ( @LEdge * 1.0 + ?Zmax - ?Zmin
) / @{Dcel_f} )
 endif
 
 To obtain a meaningful result, one have to use an optimized radii for
each atom. This is done by
 
 
 prnlev
0
                  stream
                  radii_prot_na.str
                  prnlev
5
                  scalar
wmain statistics select .not. type H* end
                  define
check select (.not type H* ) .and. ( property wmain .eq. 0.0 ) end
                  if
?nsel ne 0 
stop       !some
heavy atom have a zero radius
                   Then, we perform 4 PB calculations: coarse and fine grid
calculations for solvent and vacuum;
 
 
 PBEQ
 ! in solution
 SOLVE Nclx @{nclx_c} Ncly @{ncly_c} Nclz @{nclz_c} .......
 if focus eq true SOLVE Nclx @{nclx_f} Ncly @{ncly_f} Nclz
@{nclz_f} .....
 
 set Ener80 = ?enpb
 
 ! write phi
 open write file unit 40 name @pdb.phi80
 write PHI kcal unit 40
 close unit 40
 
 write phi kcal card xfirst -100.0 xlast 100.0 unit 6
 
 ! in vacuum
 SOLVE Nclx @{nclx_c} Ncly @{ncly_c} Nclz @{nclz_c} ......
 if focus eq true SOLVE Nclx @{nclx_f} Ncly @{ncly_f} Nclz
@{nclz_f} ......
 
 set Ener1 = ?enpb
 
 calc dEner  = @Ener80 - @Ener1
 
 RESET
 END
 
 The above calculations can be executed by
 
 
 $CHARMMEXEC
pdb=3gb1 < pbeq.inp > 3gb1.out One can repeat the calculations with "pdb=1ppf".
 
 There is a file called "view.com"
which will visualize the calculated potential "@pdb.phi80" using the DINO
visualization program.
 
 
 
 | 
                
                  | pka_single.inp pka_multiple.inp
 | These
inputs are under the "pka"
directory. In this example, we will compute pKa values of Asp7, Glu10,
Glu19, Asp27, and Glu43 of OMTKY3 using two PDB structures from NMR
(PDB:1OMU) and X-ray (PDB:1PPF). We will examine the influence of
protein interior dielectric constant as well as treatment of titration
sites on the computed pKa. "pka_single.inp" consider one site at
a time, while "pka_multiple.inp" treat the multiple (5 in this
example) sites all together. When multiple sites are treated at the
same time, all other sites are neutralized during the PB calculations
of a specific site. The "single site" file is executed by 
 
 $CHARMMEXEC
pdb=1ppf epsp=20 resid=7 < pka_multiple.inp >
1ppf_pka.out,resid7_epsp20This will produce "1ppf_pka.dat,resid7_epsp20" which contains
 
 
 site
pKa_intr pKa_mod pKa_shift pKa_Born pKa_back
 dG_Born 
dG_back  1
  3.023       
 3.86     
 -0.836       0.313
     
-1.150      -0.431  
   1.579
 
 pKa_intr(insic) = pKa_mod(el) + pKa_shift
 pKa_shift = pKa_Born + pKa_back
 
 The "multiple sites" file is executed by
 
 $CHARMMEXEC
pdb=1omu epsp=20  < pka_multiple.inp
> 1omu_pka.out,epsp20
 
 This will produce "1omu_pka.dat,epsp20" which contains
 
 site
pKa_intr pKa_mod pKa_shift pKa_Born pKa_back
 dG_Born 
dG_back  
  1
    2.683       3.86
     
-1.177       0.265  
   -1.442
      -0.363    
  1.979The input files call "pka_smeared.str"
which sequentially calls "pka_charge.str",
"pka_shift.str",
and "pka_inter.str".2     2.706    
  4.07    
  -1.363       0.292  
   -1.656
      -0.401    
  2.273
 3     2.102    
  4.07    
  -1.967       0.014  
   -1.982
      -0.020    
  2.720
 4     2.794    
  3.86    
  -1.065       0.585  
   -1.651
      -0.804    
  2.266
 5     3.489    
  4.07    
  -0.580       0.107  
   -0.688
      -0.147    
  0.944
 
 
 
 Experimental values are
 Asp7 : < 2.7
 Glu10 : 4.2
 Glu19 : 3.2
 Asp27 : < 2.3
 Glu43 : 4.8
 
 
 
 |