# Convergence?

#### Stability of RNA hairpins

Joanna Sarzynska & Tadeusz Kulinski, Poznan, Poland



Lennart Nilsson, Karolinska Institutet

### **RNA Tetraloops –** common motifs involved in tertiary contacts, protein binding, folding initiation

Of 256 possible tetraloops, 12 dominate in nature.

### UNCG, GNRA, CUYG

~50% of rRNA tetraloops are GNRA loops:







Themodynamics: SantaLucia Jr., J., Kierzek, R. & Turner, D.H. (1992) Science **256**, 217-219. NMR (wt 1zih): Jucker FM, Heus HA, Yip PF, Moors EHM &Pardi A. (1996) J. Mol. Biol. **264**, 968-980. © Lennart Nilsson , 2006.



# What is happening?

- $G \rightarrow I$ : removal of  $NH_2$  in minor groove
- $G \rightarrow A$ : also loss of N-H at position 1
- G8 → I8 in the stem, loss of one H-bond (1.3 kcal/mol)
- G4  $\rightarrow$  I4 in the loop, loss of two H-bonds (0.65 kcal/mol)
- G4  $\rightarrow$  A4 in the loop, loss of three H-bonds (0.75 kcal/mol)



# ACAA loop no specific A4-A7 interactions



## **FEP** simulations



| Models of unfolded state          | Average $\Delta G_u$ [kcal/mol] |           |
|-----------------------------------|---------------------------------|-----------|
|                                   | G→I                             | G→A       |
| Single Guanosine                  | 73.6±0.1                        | 74.5 ±0.1 |
| CGC triplet in A-RNA conformation | $73.9 \pm 0.2$                  | 74.3±0.4  |
| CGC triplet from the loop         | $74.4 \pm 0.2$                  | 75.3±0.1  |
| GCGCA in A-RNA conformation       | 73.6±0.1                        |           |

PERT, PBC w/ or w/o PME, spherical geometry, 101 windows, 0.4 – 0.8 ns total time

Sarzynska J, Nilsson L, Kulinski T. (2003). Effects of Base Substitutions in an RNA Hairpin from Molecular Dynamics and Free Energy Simulations. Biophys. J. **85**(6):3445-3459.

### Calculated (PERT) hairpin stabilities



### Auguste Compte, Philosophie Positive (1830):

"Every attempt to employ mathematical methods in the study of chemical questions must be considered profoundly irrational and contrary to the spirit of chemistry. If mathematical analysis should ever hold a prominent place in chemistry an aberration which is happily almost impossible it would occasion a rapid and widespread degeneration of that science."

### (mis?)calculated hairpin stabilities

| Mutation                                 | $\Delta G^*$ (forward/backward) | $\Delta G_{\rm AVG}$ | $\Delta\Delta G_{CALC}$ |
|------------------------------------------|---------------------------------|----------------------|-------------------------|
| Unfolded <sup>†</sup> G4→A4 <sup>‡</sup> | 74.4/-74.2                      | 74.3                 |                         |
| Hairpin G4→A4 <sup>§</sup>               | 79.6/-74.7                      | 77.2                 | 2.9                     |
| Hairpin G4→I4                            | 77.0/-78.0                      | 77.5                 |                         |
| Hairpin I4→A4                            | 4.2/-1.8                        | 3.0                  |                         |
| Hairpin G4→A4 via I4                     | 81.2/-79.8                      | 80.5                 | 6.2                     |
| Hairpin I4→G4 <sup>¶</sup>               | -74.0                           |                      |                         |
| Hairpin A4→G4 via I4 <sup>¶</sup>        | -75.8                           |                      | 4.2                     |

TABLE 8 Free energy perturbation results from simulations in water sphere [kcal/mol]

Conformational heterogeneity of the ACAA loop (when imposed on a GCAA structure)

## Conclusion

crucial for the rational design of KNA-derived molecules of therapeutic application. Our study suggests that GNRA tetraloops where G is replaced by I or A may have other lowenergy conformations distinct from the GNRA fold, which were not reached during FEP simulations. This observation is consistent with the idea that the phylogenetic preference

*Note added in proof*: After this paper was accepted, the structure of an ACAA tetraloop was determined by NMR (Staple, D. W., S. E. Butcher. 2003. Solution structure of the HIV-1 frameshift inducing stem-loop RNA. *Nucl. Acids. Res.* 31:4326–4331) and found to be of the AGNN-tetraloop type, rather than of the GNRA-type. This confirms our suggestion that

### ACAA – sim vs real



## **Conformational Equilibria**

### **Stacking Free Energies from PMF Calculations on Dinucleotides**

- •Sequence
- •Length
- •Temperature
- •DNA / RNA
- Solvent



# Temperature dependenc of ApA stacking from PMF *calculations*

13058 J. Phys. Chem., Vol. 99, No. 35, 1995



Figure 4. Van't Hoff plot for adenylyl-3',5'-adenosine. The line is

# **Conformational Equilibria**

- •Sequence
  - Pu-Pu > Pu/Py > Py-Py
- •Temperature
  - **Enthalpy driven**
  - $\Delta H=-6kcal/mol$
  - **∆S= -13 cal/mol/K**
- •DNA/RNA
  - T better than U
  - 2'OH slight favor of stack

- •Primarily nearest neighbor effect
- •High dielectric solvents favor stacking
- Base mobility decreases stacking

Norberg&Nilsson, *Solvent Influence on Base Stacking*. Biophys J., 1998. **74**(1): 394-402 (and references therein) © Lennart Nilsson, 2006.